正在加载图片...
例3确定函数f(x)=2x3-9x2 +12x-3的单调区间 解 D:(-∞,+∞) X 2.5 ∫(x)=6x2-18x+12=6(x-1)(x-2) 解方程∫(x)=0得 当-∞<x<埘时,∫(x)>0,∴在(-∞,1单调增加; 当1<x<2时,∫(x)<0,∴在1,2上单调减少; 当2<x<+∞时,∫(x)>0,∴在[2,+∞)上单调增加; 单调区间为(-∞,1b[1,2l,[2,+∞) 上一页下一页返回例3 12 3 . ( ) 2 9 3 2 的单调区间 确定函数 + − = − x f x x x 解  D :(−,+). ( ) 6 18 12 2 f  x = x − x + = 6(x − 1)(x − 2) 解方程f (x) = 0 得, 1, 2. x1 = x2 = 当−   x  1时, f (x)  0, 在(−,1]上单调增加; 当1  x  2时, f (x)  0, 在[1,2]上单调减少; 当2  x  +时, f (x)  0, 在[2,+)上单调增加; 单调区间为 (−,1], [1,2],[2,+)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有