正在加载图片...
Permutation Groups group(G,)with binary operator·:G×G→G ·closure:π,o∈G→π·o∈G ·associativity::π·(o·T)=(π·o)·T 。identity:e∈G,Vπ∈G,e·T=π 。inverse:Vπ∈G,o∈G,π·o=o·π=e 0=π-1 commutative (abelian)group: π·0=0·π symmetric group S.:all permutations cyclic group Cn:rotations Dihedral group D:rotations reflectionsPermutation Groups group (G, ·) with binary operator · : G ⇥ G ! G • closure: • associativity: • identity: • inverse: ⇡, ￾ 2 G ) ⇡ · ￾ 2 G ⇡ · (￾ · ⌧ )=(⇡ · ￾) · ⌧ ￾ = ⇡￾1 8⇡ 2 G, 9￾ 2 G, ⇡ · ￾ = ￾ · ⇡ = e 9e 2 G, 8⇡ 2 G, e · ⇡ = ⇡ commutative (abelian) group: ⇡ · ￾ = ￾ · ⇡ symmetric group cyclic group Dihedral group Sn Cn Dn : all permutations : rotations : rotations & reflections
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有