正在加载图片...
根据上面的理解,在解决实际问题时,我们可以简捷地按照以下 的步骤 自变量 转为 直接 分割 x+△1->A≈f(x)Ax-做>S=f(x)bx->s=(x) 来直接求解。 了解了方法的实质以后,上述过程还可以进一步简化:即一开始 就将小区间形式地取为[x,x+](d称为x的微元),然后根据实际 题得出微分形式dS=f(x)hx(dS称为S的微元),再在区间[ab上求积 分。也就是 d→→4=/(x一→S=J(x 这种处理问题和解决问题的方法称为微元法。微元法使用起来非 常方便,在解决实际问题中应用得极为广泛,如§4中计算曲线的弧 长、几何体的体积、旋转曲面的面积等公式都可以直接用微元法来导 出,下面我们举一些其它类型的例子。根据上面的理解,在解决实际问题时,我们可以简捷地按照以下 的步骤 ⎯⎯ → xxx ],[ ⎯Δ+⎯ ⎯→ )( Δ≈Δ⎯ xxfS 规律 科学 分割 自变量 ∫ ⎯⎯→ ⎯=⎯ ⎯→ =⎯ b a )( )( dxxfSdxxfdS 积分 直接 微分 转为 来直接求解。 了解了方法的实质以后,上述过程还可以进一步简化:即一开始 就将小区间形式地取为 + dxxx ],[ (dx称为 x 的微元),然后根据实际问 题得出微分形式 = )( dxxfdS (dS 称为 S 的微元),再在区间 ba ],[ 上求积 分。也就是 ∫ ⎯⎯→ ⎯= ⎯→ = b a )( )( dxxfSdxxfdSdx 。 这种处理问题和解决问题的方法称为微元法。微元法使用起来非 常方便,在解决实际问题中应用得极为广泛,如§ 4 中计算曲线的弧 长、几何体的体积、旋转曲面的面积等公式都可以直接用微元法来导 出,下面我们举一些其它类型的例子
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有