正在加载图片...
学通第51卷第19期2006年10月 评述 4.911-916 us disc wery and transfer of valuab n into elite breeding lines.Theo 7ZhanYM.Mao Y C.XieCet al Mapping QTLin 41:391-4 ally o al inbred lines c 78 Wang,Roy IS.Nicode ohigh-resol ping to accurately map quantitative popu 位分离及克降博士学位 63 Fint-Garcia A.Thormsberry M.Buckler E S.Structureof 论文.上海:复大学油传新究所.205.69一106 nu Rev Plant Biol.2003.54 64 Ungerer MC.Purugganan M D.Map-based trait loci:Progress and prospects.Gene 82 Li Z K,Fu B Y,Gao Y M,et al.Ge e-wide in ssion li 65 Yu J M.Pressoir G Briggs W H.et al.Au nixed-model L).Pant Mol Biol,:33-52 method for association mapping that ac for multiple levels 83 E N A.Use arkers to cation in associn 3361-6 67 Wu RL ZengZ B.Joint linkage and linkag brium map icssinge Mendlia f Torpp el37 maize T.Lin S Y.Sasaki T.et al.Identification of headi Genetics.199,141:3B3-346 itative trait locu Hd6 and characterization of it 69 using advand 2001,28280 28 1207 科学通报, 2004,49878-783 mapping ping of ithn a singe population.Genetics,2005,1713 The 9王,肖。钱前,等水稻稀德突变体的传分析及基因的精 Maiesty's S en0ice1952.5-14 细定位.科学通报,2003,48151666一1670 73 90 Eshed Y,Z: line popula 1941-1352 and fine mapping of- ated OTL Genetics.1995.141 Carrari E Liu Y s.ct Zooming in on ag Ge 8202,161:913-929 trait for vield using interspecific introgre eiricihsE.etal.AalsisofQLsfocyiel 2230 www.scichina.com hup://www.cnki.n第 51 卷 第 19 期 2006 年 10 月 评 述 2230 www.scichina.com 58 The Complex trait consortium. The nature and identification of quantitative trait loci: A community’s view. Nat Rev Genet, 2003, 4: 911—916 59 Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plants height and maturity across the Poaceae, in regerence to an interspecific sorghum population. Genetics, 1995, 141: 391—411 60 Bodmer W F. Human genetics: The molecular challenge. Old Spring Harbor Symp Quant Biol Ⅱ, 1986: 1—13 61 Buckler E S I, Hornsberry J M. Plant molecular diversity and ap￾plications to genomics. Curr Opin Plant Biol, 2002, 5: 107—111 62 Flint-Garcia S A, Thuillet A C, Yu J M, et al. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J, 2006, 44: 1054—1064 63 Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357—374 64 Remington D L, Ungerer M C, Purugganan M D. Map-based cloning of quantitative trait loci: Progress and prospects. Genet Res, 2001, 78: 213—218 65 Yu J M, Pressoir G, Briggs W H, et al. A untied mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38(2): 203—208 66 Pritchard J K, Rosenberg N A. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet, 1999, 65: 220—228 67 Wu R L, Zeng Z B. Joint linkage and linkage disequilibrium map￾ping in natural populations. Genetics, 2001, 157: 899—909 68 Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333—346 69 Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 poly￾morphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286—289 70 Davasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics, 1995, 141: 1199— 1207 71 Xiong M M, Guo S W. Fine-scale mapping of quantitative trait loci using historical recombinations. Genetics, 1997, 145: 1201— 1218 72 Wright S. The genetics of quantitative variability. In: Reeve E C R, Waddington C H, eds. Quantitative Inheritance. London: Her Majesty’s Stationery Office, 1952. 5—14 73 Hill W G. Selection with recurrent backcrossing to develop co￾genic lines for quantitative trait loci analysis. Genetics, 1998, 148: 1341—1352 74 Luo Z W, Wu C I, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161: 915—929 75 Luo Z W, Ma L. An improved formulation of marker heterozygos￾ity in recurrent selection and backcross schemes. Genet Res, 2004, 83: 49—53 76 Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191—203 77 Zhang Y M, Mao Y C, Xie C Q, et al. Mapping QTL using natu￾rally occurring genetic variance among commercial inbred lines of maize (Zea mays L). Genetics, 2005, 169(4): 2267—2275 78 Wang X S, Roy I S, Nicodeme E, et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res, 2003, 13: 1654—1664 79 Jannink J L. Selective phenotyping to accurately map quantitative trait loci. Crop Sci, 2005, 45: 901—908 80 胡小华. 酵母数量性状主效基因的定位分离及克隆. 博士学位 论文. 上海: 复旦大学遗传研究所, 2005. 69—106 81 Frary A, Nesbitt T C, Frary A, et al. fw2.2: A quantitative trait lo￾cus key to the evolution of tomato fruit size. Science, 2000, 289: 85—88 82 Li Z K, Fu B Y, Gao Y M, et al. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phe￾notypes in rice (Oryza sativa L). Plant Mol Biol, 2005, 59: 33—52 83 Zhang Y S, Luo L J, Xu C G, et al. Quantitative trait loci for pani￾cle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rices (Oryza sa￾tiva). Theor Appl Genet, 2006, 113: 361—368 84 Yamamoto T, Kuboki Y, Lin S Y, et al. Fine mapping of quantita￾tive trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37 —44 85 Yamamoto T, Lin S Y, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885—891 86 李培金, 曾大力, 刘新仿, 等. 水稻散生突变体的遗传和基因定 位研究. 科学通报, 2003, 48(21): 2271—2274 87 梁国华, 曹小迎, 隋炯明, 等. 水稻半矮秆基因 sd-g 的精细定位. 科学通报, 2004, 49(8): 778—783 88 Peleman J D, Wye C, Zethof J, et al. Quantitative trait loci (QTL) isogenic recombinant analysis: A method for high-resolution map￾ping of QTL within a single population. Genetics, 2005, 171: 1341 —1352 89 王斌, 肖晗, 钱前, 等. 水稻稀穗突变体的遗传分析及基因的精 细定位. 科学通报, 2003, 48(15): 1666—1670 90 Eshed Y, Zamir D. An introgression line population of Lycopersi￾con pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147—1162 91 Fridman E, Carrari F, Liu Y S, et al. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305: 1786—1789 92 Li J Z, Huang X Q, Heinrichs F, et al. Analysis of QTLs for yield
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有