正在加载图片...
·1258· 工程科学学报,第40卷,第10期 面不规则,说明周向生长不够彻底,而当晶种系数为 [3]Li Z,Zhao X C.Jiang Y R,et al.Controlled preparation and 2%时,六边形片状结构-A山,0生长比较完整,成 properties of flaky alumina for white LEDs.Funct Mater,2013, 44(18):2663 型整体性比较良好.但晶种系数越大,产物的粒度 (李兆,赵西成,江元汝,等.白光LED用片状a-AL203粉体 也越大,这点对比图中的比例尺也可轻易论证.所 的控制合成及应用研究.功能材料,2013,44(18):2663) 以,综合上述的分析,晶种系数为2%,煅烧温度为 [4]Dong Y,Jang JQ,Liu G,et al.Preparation of alumina as a raw 850℃时,可保证在较低的成核温度下,得到α- material of phosphor and controlling of its particle size and shape A山,0,结晶度高,形貌均一的六边形片状结构型产 J Chin Ceram Soc,2004,32(4):393 (董岩,蒋建清,刘刚,等。作为荧光粉原料的氧化铝的制备 品.图7(b)中,六边形片状氧化铝的厚度为0.74 及其形貌控制.硅酸盐学报.2004,32(4):393) um,粒度为6.5um符合片状氧化铝规格要求[),说 [5]Rajendran M,Bhattacharya A K.A process for the production of 明此方法生产片状氧化铝是可行的. sub-micron to millimetre sized thermally stable a-alumina spheres. Mater Sci Eng B,1999,60(3)217 3结论 [6]LiJG.Sun X D.Synthesis and sintering behavior of a nanocrys- talline a-alumina powder.Acta Mater,2000,48(12):3103 (1)在一水软铝石煅烧过程中,AF,晶种促进 [7]Ingram-Jones V J,Slade R C T,Davies T W,et al.Dehydroxyla- α-A山,03成核过程的反应机理是气固反应,并且由 tion sequences of gibbsite and boehmite:study of differences be- 差热-热重-质荷分析可知,A-O-F结构的氟化物 tween soak and flash calcination and of particle-size effects.I Ma- 气体是促进相变成核的关键,反应过程会不断释放 ter Chem,1996,6(1):73 [8] 出HF气体 Wang S F,Xiang X,Ding Q P,et al.Size-controlled synthesis and photoluminescence of porous monolithic a-alumina.Ceram (2)高温是α-A山,0,成核过程的必要前提,但 1m,2013,39(3):2943 在恒定煅烧时间为4h条件下,AF3晶种能够降低 [9]Xie Z P,Lu J W,Huang Y,et al.Influence of a-alumina seed on α-A,03的成核温度,且微量的晶种(晶种系数 the morphology of grain growth in alumina ceramics from Bayer alu- minum hydroxide.Mater Lett,2003,57(16-17):2501 0.5%)对成核的促进作用已很明显. [10]Yamai I,Saito H.Vapor phase growth of alumina whiskers by (3)AF,晶种会促使产物由不规则四方形结构 hydrolysis of aluminum fluoride.Cryst Growth,1978,45:511 向六方形片状结构转变,晶种系数的增加会加快整 [11]Zivkovic Z,Strbac N,Sestak J.Influence of fluorides on poly- 个转变的过程,同时也会增大产物的粒度,降低其比 morphous transformation of aAlO formation.Thermochim Ac- 表面积.当晶种系数W=2%,煅烧温度为850℃, ta,1995,266:293 产物可以全部转化为α-A山,03,且产物的整体形貌 [12]Fu G F,Wang J,Kang J.Influence of AlF;and hydrothermal conditions on morphologies of a-Al203.Trans Nonferrous Met 为成型完整的六边形片状氧化铝结构,与不添加晶 Soc China,2008,18(3):743 种煅烧产物完全转变为α-A山203时所需温度1200 [13]Wojcik M A,Gajda T,Meiners B,et al.High temperature mod- ℃相比,此条件可降低煅烧温度350℃. ification of the morphology of corundum primary crystals of special alumina during calcination of aluminium trihydrate with mineral- izers.Light Metals,1998,1998:205 参考文献 [14]Shakleee C A,Messing G L.Growth of a-Al2O:platelets in the [1]Hu C Q.Zhang F H.Preparation and analysis of high color ren- HF-Y-Al2O3 system.J Am Ceram Soc,1994,77(11):2977 dering index white LED.J Funct Mater,2013,44(3):432 [15]Wu Y Q,Zhang Y F,Pezzotti G,et al.Influence of AlF3 and (胡长奇,张方辉.高显色白光LED的制备与研究分析.功能 ZnF2 on the phase transformation of gamma to alpha alumina. 材料,2013,44(3):432) Mater Lett,2002,52(4-5):366 [2]Wang X L.Rao H B,Xie L K,et al.YAG phosphors of WLEDs [16]Han D Z,Yin Z L,Wang J L.Research progress in preparation synthesized by advanced Pechini method.Chin J Lamin,2013. and application of high purity alumina.Inorg Chem Ind,2012. 34(6):698 44(9):1 (万贤龙,饶海波,谢立坤,等.基于改进的Pechini法制备白 (韩东战,尹中林,王建立.高纯氧化铝制备技术及应用研 光LED用YAG荧光粉.发光学报,2013,34(6):698) 究进展.无机盐工业,2012,44(9):1)工程科学学报,第 40 卷,第 10 期 面不规则,说明周向生长不够彻底,而当晶种系数为 2% 时,六边形片状结构 琢鄄鄄Al 2O3 生长比较完整,成 型整体性比较良好. 但晶种系数越大,产物的粒度 也越大,这点对比图中的比例尺也可轻易论证. 所 以,综合上述的分析,晶种系数为 2% ,煅烧温度为 850 益 时,可保证在较低的成核温度下,得到 琢鄄鄄 Al 2O3 结晶度高,形貌均一的六边形片状结构型产 品. 图 7(b)中,六边形片状氧化铝的厚度为 0郾 74 滋m,粒度为 6郾 5 滋m 符合片状氧化铝规格要求[1] ,说 明此方法生产片状氧化铝是可行的. 3 结论 (1)在一水软铝石煅烧过程中,AlF3 晶种促进 琢鄄鄄Al 2O3 成核过程的反应机理是气固反应,并且由 差热鄄鄄热重鄄鄄质荷分析可知,Al鄄鄄 O鄄鄄 F 结构的氟化物 气体是促进相变成核的关键,反应过程会不断释放 出 HF 气体. (2)高温是 琢鄄鄄 Al 2O3 成核过程的必要前提,但 在恒定煅烧时间为 4 h 条件下,AlF3 晶种能够降低 琢鄄鄄Al 2O3 的成核温度,且微量的晶种( 晶种系数 0郾 5% )对成核的促进作用已很明显. (3)AlF3 晶种会促使产物由不规则四方形结构 向六方形片状结构转变,晶种系数的增加会加快整 个转变的过程,同时也会增大产物的粒度,降低其比 表面积. 当晶种系数 W = 2% ,煅烧温度为 850 益 , 产物可以全部转化为 琢鄄鄄 Al 2O3 ,且产物的整体形貌 为成型完整的六边形片状氧化铝结构,与不添加晶 种煅烧产物完全转变为 琢鄄鄄 Al 2O3 时所需温度 1200 益相比,此条件可降低煅烧温度 350 益 . 参 考 文 献 [1] Hu C Q, Zhang F H. Preparation and analysis of high color ren鄄 dering index white LED. J Funct Mater, 2013, 44(3): 432 (胡长奇, 张方辉. 高显色白光 LED 的制备与研究分析. 功能 材料, 2013, 44(3): 432) [2] Wang X L, Rao H B, Xie L K, et al. YAG phosphors of WLEDs synthesized by advanced Pechini method. Chin J Lumin, 2013, 34(6): 698 (万贤龙, 饶海波, 谢立坤, 等. 基于改进的 Pechini 法制备白 光 LED 用 YAG 荧光粉. 发光学报, 2013, 34(6): 698) [3] Li Z, Zhao X C, Jiang Y R, et al. Controlled preparation and properties of flaky alumina for white LEDs. J Funct Mater, 2013, 44(18): 2663 (李兆, 赵西成, 江元汝, 等. 白光 LED 用片状 琢鄄鄄Al2O3 粉体 的控制合成及应用研究. 功能材料, 2013, 44(18): 2663) [4] Dong Y, Jang J Q, Liu G, et al. Preparation of alumina as a raw material of phosphor and controlling of its particle size and shape. J Chin Ceram Soc, 2004, 32(4): 393 (董岩, 蒋建清, 刘刚, 等. 作为荧光粉原料的氧化铝的制备 及其形貌控制. 硅酸盐学报, 2004, 32(4): 393) [5] Rajendran M, Bhattacharya A K. A process for the production of sub鄄micron to millimetre sized thermally stable 琢鄄alumina spheres. Mater Sci Eng B, 1999, 60(3): 217 [6] Li J G, Sun X D. Synthesis and sintering behavior of a nanocrys鄄 talline 琢鄄alumina powder. Acta Mater, 2000, 48(12): 3103 [7] Ingram鄄Jones V J, Slade R C T, Davies T W, et al. Dehydroxyla鄄 tion sequences of gibbsite and boehmite: study of differences be鄄 tween soak and flash calcination and of particle鄄size effects. J Ma鄄 ter Chem, 1996, 6(1): 73 [8] Wang S F, Xiang X, Ding Q P, et al. Size鄄controlled synthesis and photoluminescence of porous monolithic 琢鄄alumina. Ceram Int, 2013, 39(3): 2943 [9] Xie Z P, Lu J W, Huang Y, et al. Influence of 琢鄄alumina seed on the morphology of grain growth in alumina ceramics from Bayer alu鄄 minum hydroxide. Mater Lett, 2003, 57(16鄄17): 2501 [10] Yamai I, Saito H. Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride. J Cryst Growth, 1978, 45: 511 [11] 譕ivkovic 譕, 譒trbac N, 譒est佗k J. Influence of fluorides on poly鄄 morphous transformation of 琢鄄鄄 Al2O3 formation. Thermochim Ac鄄 ta, 1995, 266: 293 [12] Fu G F, Wang J, Kang J. Influence of AlF3 and hydrothermal conditions on morphologies of 琢鄄鄄 Al2O3 . Trans Nonferrous Met Soc China, 2008, 18(3): 743 [13] Wojcik M A, Gajda T, Meiners B, et al. High temperature mod鄄 ification of the morphology of corundum primary crystals of special alumina during calcination of aluminium trihydrate with mineral鄄 izers. Light Metals, 1998, 1998: 205 [14] Shakleee C A, Messing G L. Growth of 琢鄄鄄Al2O3 platelets in the HF鄄鄄酌鄄鄄Al2O3 system. J Am Ceram Soc, 1994, 77(11): 2977 [15] Wu Y Q, Zhang Y F, Pezzotti G, et al. Influence of AlF3 and ZnF2 on the phase transformation of gamma to alpha alumina. Mater Lett, 2002, 52(4鄄5): 366 [16] Han D Z, Yin Z L, Wang J L. Research progress in preparation and application of high purity alumina. Inorg Chem Ind, 2012, 44(9): 1 (韩东战, 尹中林, 王建立. 高纯氧化铝制备技术及应用研 究进展. 无机盐工业, 2012, 44(9): 1) ·1258·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有