正在加载图片...
W Li, Z.H. Chen /Ceramics International 35(2009)747-753 753 [11] S.P. Rigby, R.S. Fletcher, S.N. Riley, Characterisation of porous solids [16] S.P. Rigby, D. Barwick, R.S. Fletcher, et al., Interpreting mercury integrated nitrogen sorption and mercury porosimetry, Chem Eng. porosimetry data for catalyst supports using semi-empirical alterna- Sci.59(2004)41-51 tives to the Washburn equation, Appl. Catal. A 238(2003)303- [12] G.R. Wang. Study on Pore Structure of Porous Materials under Diffusion/ Reaction Conditions, Tianjing University, Tianjing, 2000 [17]SP. Rigby, R.S. Fletcher, S.N. Riley, Determination of the cause of [13]C. Salmas, G. Androutsopoulos, Mercury porosimetry: contact angle mercury entrapment during porosimetry experiments on sol-gel silica hysteresis of materials with controlled pore structure, J. Colloid Interf. catalyst supports, Appl. Catal. A 247(2003)27-39 Sci.239(2001)178-18 [18] Z. Liu, D. Winslow, Sub-distribution of pore proach to [14] F Porcheron, P.A. Monson, Molecular modeling of mercury porosimetry correlate pore structure with permeability, Cem. Concr. Res. 25(1995) Adsorption 11(2005)325-329 769-778 [15] G.P. Matthews, C.J. Ridgway, M.C. Spearing, Void space modeling of [ 19] w. Li, Z.H. Chen, Characterization of partially densified 3D CSiC mercury intrusion hysteresis in sandstone, paper coating and other porous composites by using mercury intrusion porosimetry and nitrogen sorption, media, J. Colloid Interf. Sci. 171(1995)8-27. Ceram.Int.34(2008)531-535[11] S.P. Rigby, R.S. Fletcher, S.N. Riley, Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry, Chem. Eng. Sci. 59 (2004) 41–51. [12] G.R. Wang, Study on Pore Structure of Porous Materials under Diffusion/ Reaction Conditions, Tianjing University, Tianjing, 2000. [13] C. Salmas, G. Androutsopoulos, Mercury porosimetry: contact angle hysteresis of materials with controlled pore structure, J. Colloid Interf. Sci. 239 (2001) 178–189. [14] F. Porcheron, P.A. Monson, Molecular modeling of mercury porosimetry, Adsorption 11 (2005) 325–329. [15] G.P. Matthews, C.J. Ridgway, M.C. Spearing, Void space modeling of mercury intrusion hysteresis in sandstone, paper coating and other porous media, J. Colloid Interf. Sci. 171 (1995) 8–27. [16] S.P. Rigby, D. Barwick, R.S. Fletcher, et al., Interpreting mercury porosimetry data for catalyst supports using semi-empirical alterna￾tives to the Washburn equation, Appl. Catal. A 238 (2003) 303– 318. [17] S.P. Rigby, R.S. Fletcher, S.N. Riley, Determination of the cause of mercury entrapment during porosimetry experiments on sol–gel silica catalyst supports, Appl. Catal. A 247 (2003) 27–39. [18] Z. Liu, D. Winslow, Sub-distribution of pore size: a new approach to correlate pore structure with permeability, Cem. Concr. Res. 25 (1995) 769–778. [19] W. Li, Z.H. Chen, Characterization of partially densified 3D Cf/SiC composites by using mercury intrusion porosimetry and nitrogen sorption, Ceram. Int. 34 (2008) 531–535. W. Li, Z.H. Chen / Ceramics International 35 (2009) 747–753 753
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有