正在加载图片...
September 1998 Creep and Fatigue Behavior in an Enhanced SiC/SiC Composite at High Temperature 2277 Temperature Cyclic Fatigue of Silicon Carbide Fiber Reinforced Silicon Car- 29R. Bodet, J. Lamon, N. Jia, and R. E. Tressler, " Microstru J C Stability and Creep Behavior of Si-C-O(Nicalon) Fibers in F W. Zok, and A G. Evans, "Oxidation Monoxide and Argon Environments, " J. A. Ceram. Soc., 79 [10J 2673-86 Embrittlement Probe for Ceramic-Matrix Composites, " J. Am. Ceram. Soc., 78 82097-100(1 PA. G. Evans and F. w. Zok, " The Physics and Mechanics of Brittle Matrix IP. Reynaud, D. Rouby, G. Fantozzi, F. Abbe, and P. Peres, "Cyclic Fatigue of Ceramic-Matrix Composites, pp 85-94 in Ce M.R. Begley, B N Cox, and R. M. MeMeeking, " Time Dependent Crack tre Ceramic-Matrix Ce opposites 1. De Growth in Ceramic Matrix Composites with Creeping Fibers, " Acta Metall. sign, Durability, and Performance. Edited by A G. Evans and R. Naslain Maer,43U]3927-36(1995) American Ceramic Society, Westerville, OH, 1995 M. M y o A. sites wnsh aneeR g MeM eekingech emps soptuse 43 Fatigue Mechanisms in Graphite/SiC Composites at Room and High Tem- 15]727-40(1995) perature, 'J.Am. Ceram Soc., 77[3]792-800(1994) 33A.G. Evans and C. Weber, ""Creep Damage in SiC/SiC Composites,' cing Ageing Effects on Mater. Sci. Eng, A, A208, 1-6(1996) 3-C R. Jones, C H. Henager Jr, and R. H, Jones, ""Crack Bridging by Sic 2L. Filipuzzi, G. Camus, R. Naslain, and J. Thebault, "" Oxidation Mecha Fibers during slow Crack Growth and the resultar sms and Kinetics of lD-SiC/SiC Composite Material, I: An Experimen tal SiC/SiC Composites, "Scr. Metall. Mater, 33[12] 2067-72(1995) pproach,J Am Ceram Soc 721.459-66(1994) on of Oxi- ns in Thermostructural Composites, "J. Anm Ceram Soc., 77 cracking and Elastic M. L. Bouchetou, T. Cutard, M. Huger, D. Fargeot, and C. Gault, "Effect Chou, Damage Development and R. Bodet, X. Bourrat, J. Lamon, and R. Naslain, Tensile Creep Behaviour elope of a Silicon Carbide-Based Fiber with a Low Oxygen Content, J. Mater. Sci. under Static Fatigue and Cyclic Fatigue, 'J. Am. Ceram. Soc., 76[7J1720-28 d mechaniam a. "CMC. Microcracking: Relationship with Microstructure L P. Zawada, L M. Butkus, and G. A. Hartman, Tensile and Fatigue ber-Reinforced Aluminosilicate Glass, J.Am Ceran.Soc,742851-58(1991) G. Simon and A R. Bunsell,""Creep Behaviour and Structural Character 3%S, F. Shuler, J. W. Holmes, and X. Wu, " Influence of Loading Frequency ization at High Temperatures of Nicalon SiC Fibres, J Mater. Sci, 19, 3658- on the Room-Temperature Fatigue of a Carbon-Fiber/SiC-Matrix Composite, 70(1984) JAm. Ceram.Soc,7619]2327-36(1993) N. Jia, R. Bodet, and R E. Tressler, "" Effects of Microstructural Instability 40M. Steen,"Fatigue of 2D Woven Ceramic Comp n the Creep Behavior of Sic-C-O(Nicalon) Fibers in Argon, J. Am. Ceram. tures", pp. 1687-92 in Fatigue 96, Vol. Ill. Edited by G. Ldtjering and H. Soc,762]3051-60(1993) Nowack. Elsevier Science. Oxford. U. K. 1996Temperature Cyclic Fatigue of Silicon Carbide Fiber Reinforced Silicon Car￾bide Matrix Composites,’’ Ceram. Eng. Sci. Proc., 15 [4] 3–12 (1994). 18F. E. Heredia, J. C. McNulty, F. W. Zok, and A. G. Evans, ‘‘Oxidation Embrittlement Probe for Ceramic-Matrix Composites,’’ J. Am. Ceram. Soc., 78 [8] 2097–100 (1995). 19P. Reynaud, D. Rouby, G. Fantozzi, F. Abbe, and P. Peres, ‘‘Cyclic Fatigue at High Temperatures of Ceramic-Matrix Composites’’; pp. 85–94 in Ceramic Transactions, Vol. 57, High-Temperature Ceramic-Matrix Composites I: De￾sign, Durability, and Performance. Edited by A. G. Evans and R. Naslain. American Ceramic Society, Westerville, OH, 1995. 20W. L. Morris, B. N. Cox, D. B. Marshall, R. V. Inman, and M. R. James, ‘‘Fatigue Mechanisms in Graphite/SiC Composites at Room and High Tem￾perature,’’ J. Am. Ceram. Soc., 77 [3] 792–800 (1994). 21N. Frety, R. Molins, and M. Boussuge, ‘‘Oxidizing Ageing Effects on SiC–SiC Composites,’’ J. Mater. Sci., 27, 5084–90 (1992). 22L. Filipuzzi, G. Camus, R. Naslain, and J. The´bault, ‘‘Oxidation Mecha￾nisms and Kinetics of 1D-SiC/SiC Composite Material, I: An Experimental Approach,’’ J. Am. Ceram. Soc., 77 [2] 459–66 (1994). 23M. Huger, D. Fargeot, and C. Gault, ‘‘Ultrasonic Characterization of Oxi￾dation Mechanisms in Thermostructural Composites,’’ J. Am. Ceram. Soc., 77 [10] 2554–60 (1994). 24M. L. Bouchetou, T. Cutard, M. Huger, D. Fargeot, and C. Gault, ‘‘Effect of the Environment on CMCs’’; see Ref. 19, pp. 181–90. 25R. Bodet, X. Bourrat, J. Lamon, and R. Naslain, ‘‘Tensile Creep Behaviour of a Silicon Carbide-Based Fiber with a Low Oxygen Content,’’ J. Mater. Sci., 30, 661–77 (1995). 26L. Guillaumat, ‘‘CMC Microcracking: Relationship with Microstructure and Mechanical Behavior’’; Ph.D. Thesis. Laboratoire des Composites Ther￾mostructurales, Domaine Universitaire, Bordeaux, France, Feb. 1994. 27G. Simon and A. R. Bunsell, ‘‘Creep Behaviour and Structural Character￾ization at High Temperatures of Nicalon SiC Fibres,’’ J. Mater. Sci., 19, 3658– 70 (1984). 28N. Jia, R. Bodet, and R. E. Tressler, ‘‘Effects of Microstructural Instability on the Creep Behavior of SiC-C-O (Nicalon) Fibers in Argon,’’ J. Am. Ceram. Soc., 76 [12] 3051–60 (1993). 29R. Bodet, J. Lamon, N. Jia, and R. E. Tressler, ‘‘Microstructural Stability and Creep Behavior of Si-C-O (Nicalon) Fibers in Carbon Monoxide and Argon Environments,’’ J. Am. Ceram. Soc., 79 [10] 2673–86 (1996). 30A. G. Evans and F. W. Zok, ‘‘The Physics and Mechanics of Brittle Matrix Composites,’’ J. Mater. Sci., 29, 3857–96 (1994). 31M. R. Begley, B. N. Cox, and R. M. McMeeking, ‘‘Time Dependent Crack Growth in Ceramic Matrix Composites with Creeping Fibers,’’ Acta Metall. Mater., 43 [11] 3927–36 (1995). 32M. R. Begley, A. G. Evans, and R. M. McMeeking, ‘‘Creep Rupture in Ceramic Matrix Composites with Creeping Fibers,’’ J. Mech. Phys. Solids, 43 [5] 727–40 (1995). 33A. G. Evans and C. Weber, ‘‘Creep Damage in SiC/SiC Composites,’’ Mater. Sci. Eng., A, A208, 1–6 (1996). 34C. R. Jones, C. H. Henager Jr., and R. H. Jones, ‘‘Crack Bridging by SiC Fibers during Slow Crack Growth and the Resultant Fracture Toughness of SiC/SiCf Composites,’’ Scr. Metall. Mater., 33 [12] 2067–72 (1995). 35K. M. Prewo, ‘‘Fatigue and Stress Rupture of Silicon Carbide Fiber￾Reinforced Glass-Ceramics,’’ J. Mater. Sci., 22, 2695–701 (1987). 36P. G. Karandikar and T.-W. Chou, ‘‘Microcracking and Elastic Moduli Reductions in Unidirectional Nicalon-CAS Composite under Cyclic Fatigue Loading,’’ Ceram. Eng. Sci. Proc., 13 [9–10] 881–88 (1992). 37P. G. Karandikar and T.-W. Chou, ‘‘Damage Development and Moduli Reductions in Nicalon–Calcium Aluminosilicate Composites under Static Fatigue and Cyclic Fatigue,’’ J. Am. Ceram. Soc., 76 [7] 1720–28 (1993). 38L. P. Zawada, L. M. Butkus, and G. A. Hartman, ‘‘Tensile and Fatigue Behavior of Silicon Carbide Fiber-Reinforced Aluminosilicate Glass,’’ J. Am. Ceram. Soc., 74 [11] 2851–58 (1991). 39S. F. Shuler, J. W. Holmes, and X. Wu, ‘‘Influence of Loading Frequency on the Room-Temperature Fatigue of a Carbon-Fiber/SiC-Matrix Composite,’’ J. Am. Ceram. Soc., 76 [9] 2327–36 (1993). 40M. Steen, ‘‘Fatigue of 2D Woven Ceramic Composites at High Tempera￾tures’’; pp. 1687–92 in Fatigue ’96, Vol. III. Edited by G. Lu¨tjering and H. Nowack. Elsevier Science, Oxford, U.K., 1996. h September 1998 Creep and Fatigue Behavior in an Enhanced SiC/SiC Composite at High Temperature 2277
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有