正在加载图片...
The net contribution is e=6.-0n>0 So that the lead compensator al ways makes a positive contribution to the angle criterion. This has the effect of allowing the closed-loop poles to move to the left in the s- lane The problem is then how to choose the relative location of the pole and the zero We reproduce the advice of D'AzZo and houris Method 1 Use the zero to cancel a low frequency real pole. This can simplify the root locus and reduce the complexity of the problem. The compensator pole is then placed such that S1 becomes a point on the desired root-locus. For a type-1 system, the real pole (excluding the pole at zero that is closest to the origin should be cancelled. For a type 0 system the second closest pole to the origin should be cancelled 2022-2-32022-2-3 7 The net contribution is    0  c  z  p So that the lead compensator always makes a positive contribution to the angle criterion. This has the effect of allowing the closed-loop poles to move to the left in the s- plane. The problem is then how to choose the relative location of the pole and the zero. We reproduce the advice of D'Azzo and Houpis. Method 1 Use the zero to cancel a low frequency real pole. This can simplify the root locus and reduce the complexity of the problem. The compensator pole is then placed such that s1 becomes a point on the desired root-locus. For a type-1 system, the real pole (excluding the pole at zero) that is closest to the origin should be cancelled. For a type 0 system, the second closest pole to the origin should be cancelled
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有