0.8 0.8 0 04 02 01 2 0.8 12 0.8 2 Box Box Distance(m) Distance(m Fig.17. Accuracy for different Fig.18.Angle error for different Fig.19. Accuracy for different Fig.20. Angle error for different boxes boxes distances distances 0 0.8 0. 0.6 0.6 0.4 0.2 0.2 -RF-3DScan 0.2 -RF-3DScan 02 F-3DSea -STPP -STPP 0 101520 25 8 12 Number of Boxes Box Distance Angle Error (deg.) Angle Error (deg.) Fig.21. Accuracy for package Fig.22. Accuracy for different Fig.23.CDF of angle error for Fig.24.CDF of angle error for stacking cases different boxes different distances IX.CONCLUSION [6]T.Wei and X.Zhang.Gyro in the Air:Tracking 3D Orientation of In this paper,we present RF-3DScan,an RFID-based system Batteryless Internet-of-Things,in Proc.of ACM MOBICOM,2016. to perform 3D reconstruction on tagged packages.RF-3DScan [7]J.Wang and D.Katabi,Dude.where's my card?:RFID Positioning That Works with Multipath and Non-Line of Sight.in Proc.of ACM can determine the package orientation for a single package SIGCOMM,2013. with the 1-dimensional mobile scanning,and determine the [8]L.Yang.Q.Lin,X.Li.C.Xiao,M.Li and Y.Liu,See Through Walls with COTS RFID Systems,in Proc.of ACM MOBICOM,2015. package stacking for multiple packages with the 2-dimensional [9]W.Ruan.L.Yao.Q.Sheng.N.Falkner and X.Li.TagTrack:Device-free mobile scanning.The key innovation of this work is that we Localization and Tracking Using Passive RFID Tags,in Proc.of ACM propose an angle-profile-based measurement for the relative MOBIOUITOUS.2014. [10]L.Yang.Y.Chen,X.Li,C.Xiao,M.Li,and Y.Liu,Tagoram:Real-time localization.and we show the solution to use the relative Tracking of Mobile RFID Tags to High Precision Using COTS Devices, positions of the tags on the packages to reconstruct the in Proc.of ACM MOBICOM,2014. packages in the 3D space.In the future,we will further [11]J.Wang.F.Adib,R.Knepper,D.Katabi and D.Rus,RF-Compass: Robot Object Manipulation Using RFIDs,in Proc.of ACM MOB/COM. improve our approach,and we wish our work can benefit the 2013. logistic-related applications. [12]J.Wang,D.Vasisht and D.Katabi,RF-IDraw:Virtual Touch Screen in the Air Using RF Signals,in Proc.of ACM S/GCOMM,2014. ACKNOWLEDGMENT (13]L.Shangguan,Z.Yang.A.X.Liu,Z.Zhou and Y.Liu,STPP: This work is supported in part by National Natural Science Spatial-Temporal Phase Profiling-Based Method for Relative RFID Tag Localization,in IEEE/ACM Transactions on Networking (ToN),vol.25 Foundation of China under Grant Nos.61472185.61373129. no.1,Pp.596-609,2017. 61321491,61502224;JiangSu Natural Science Foundation [14]L.Xie,J.Sun,Q.Cai.C.Wang.J.Wu and S.Lu,Tell Me What I under Grant No.BK20151390.This work is partially sup- See:Recognize RFID Tagged Objects in Augmented Reality Systems,in ported by Collaborative Innovation Center of Novel Software Proc.of ACM UBICOMP.2016. [15]J.Nickels,P.Knierim,B.Koenings,F.Schaub,B.Wiedersheim, Technology and Industrialization.Lei Xie is the corresponding S.Musiol,and M.Weber,Find My Stuff:Supporting Physical Objects author. Search with Relative Positioning.in Proc.of ACM MOBIOUITOUS.2013 [16]J.Liu,B.Xiao,S.Chen,F.Zhu and L.Chen,Fast RFID grouping REFERENCES protocols,in Proc.of IEEE INFOCOM,2015. [1]M.Firman,O.M.Aodha.S.Julier and G.J.Brostow,Structured [17]X.Liu,B.Xiao,S.Zhang and K.Bu,Unknown Tag Identification Prediction of Unobserved Voxels From a Single Depth Image,in Proc. in Large RFID Systems:An Efficient and Complete Solution,/EEE of IEEE CVPR,2016. Transactions on Parallel and Distributed System,vol.26,no.6,pp.1775- [2]S.Izadi.D.Kim.O.Hilliges.D.Molyneaux.R.Newcombe.P.Kohli. 1788,2015. J.Shotton,S.Hodges,D.Freeman,A.Davison and A.Fitzgibbon. [18]X.Liu,S.Zhang,B.Xiao and K.Bu,Flexible and Time-Efficient KinectFusion:Real-time 3D Reconstruction and Interaction Using a Tag Scanning with Handheld Readers,IEEE Transactions on Mobile Moving Depth Camera,in Proc.of ACM UIST.2011. Computing.vol.15.no.4.pp.840-852.2016. [3]P.Tanskanen,K.Kolev,L.Meier,F.Camposeco,O.Saurer and M.Polle- [19]J.Han,Q.Chen,X.Wang.D.Ma,J.Zhao,W.Xi,Z.Jiang and Z.Wang feys,Live Metric 3D Reconstruction on Mobile Phones,in Proc.of ACM Twins:Device-free Object Tracking using Passive Tags,in Proc.of IEEE CVPR.2013. INFOCOM.2014. [4]C.Holenstein,R.Zlot and M.Bosse.Watertight Surface Reconstruction [20]L.Yang.J.Han,Y.Qi,C.Wang.T.Gu and Y.Liu,Season:Shelving of Caves from 3D Laser Data,in Proc.of IEEE IROS,2011. interference and joint identification in large-scale rfid systems.in Proc [5]Q.Lin,L.Yang.Y.Sun,T.Liu,X.Li,and Y.Liu,Beyond One-dollar of IEEE INFOCOM.2011. Mouse:A Battery-free Device for 3D Human-computer Interaction via RFID tags,in Proc.of IEEE INFOCOM,2015.123 Box 0 0.2 0.4 0.6 0.8 1 Accuracy Fig. 17. Accuracy for different boxes 123 Box 0 2 4 6 8 Angle Error (deg.) Fig. 18. Angle error for different boxes 0.8 1 1.2 Distance (m) 0 0.2 0.4 0.6 0.8 1 Accuracy Fig. 19. Accuracy for different distances 0.8 1 1.2 Distance (m) 0 2 4 6 8 Angle Error (deg.) Fig. 20. Angle error for different distances Fig. 21. Accuracy for package stacking Box Distance 0 0.2 0.4 0.6 0.8 1 Accuracy RF-3DScan STPP Fig. 22. Accuracy for different cases 0 5 10 15 20 25 Angle Error (deg.) 0 0.2 0.4 0.6 0.8 1 CDF RF-3DScan STPP Fig. 23. CDF of angle error for different boxes 0 4 8 12 16 Angle Error (deg.) 0 0.2 0.4 0.6 0.8 1 CDF RF-3DScan STPP Fig. 24. CDF of angle error for different distances IX. CONCLUSION In this paper, we present RF-3DScan, an RFID-based system to perform 3D reconstruction on tagged packages. RF-3DScan can determine the package orientation for a single package with the 1-dimensional mobile scanning, and determine the package stacking for multiple packages with the 2-dimensional mobile scanning. The key innovation of this work is that we propose an angle-profile-based measurement for the relative localization, and we show the solution to use the relative positions of the tags on the packages to reconstruct the packages in the 3D space. In the future, we will further improve our approach, and we wish our work can benefit the logistic-related applications. ACKNOWLEDGMENT This work is supported in part by National Natural Science Foundation of China under Grant Nos. 61472185, 61373129, 61321491, 61502224; JiangSu Natural Science Foundation under Grant No. BK20151390. This work is partially supported by Collaborative Innovation Center of Novel Software Technology and Industrialization. Lei Xie is the corresponding author. REFERENCES [1] M. Firman, O. M. Aodha, S. Julier and G. J. Brostow, Structured Prediction of Unobserved Voxels From a Single Depth Image, in Proc. of IEEE CVPR, 2016. [2] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison and A. Fitzgibbon, KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, in Proc. of ACM UIST, 2011. [3] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer and M. Pollefeys, Live Metric 3D Reconstruction on Mobile Phones, in Proc. of ACM CVPR, 2013. [4] C. Holenstein, R. Zlot and M. Bosse, Watertight Surface Reconstruction of Caves from 3D Laser Data, in Proc. of IEEE IROS, 2011. [5] Q. Lin, L. Yang, Y. Sun, T. Liu, X. Li, and Y. Liu, Beyond One-dollar Mouse: A Battery-free Device for 3D Human-computer Interaction via RFID tags, in Proc. of IEEE INFOCOM, 2015. [6] T. Wei and X. Zhang, Gyro in the Air: Tracking 3D Orientation of Batteryless Internet-of-Things, in Proc. of ACM MOBICOM, 2016. [7] J. Wang and D.Katabi, Dude, where’s my card?: RFID Positioning That Works with Multipath and Non-Line of Sight, in Proc. of ACM SIGCOMM, 2013. [8] L. Yang, Q. Lin, X. Li, C. Xiao, M. Li and Y. Liu, See Through Walls with COTS RFID Systems, in Proc. of ACM MOBICOM, 2015. [9] W. Ruan, L. Yao, Q. Sheng, N. Falkner and X. Li, TagTrack: Device-free Localization and Tracking Using Passive RFID Tags, in Proc. of ACM MOBIQUITOUS, 2014. [10] L. Yang, Y. Chen, X. Li, C. Xiao, M. Li, and Y. Liu, Tagoram: Real-time Tracking of Mobile RFID Tags to High Precision Using COTS Devices, in Proc. of ACM MOBICOM, 2014. [11] J. Wang, F. Adib, R. Knepper, D. Katabi and D. Rus, RF-Compass: Robot Object Manipulation Using RFIDs, in Proc. of ACM MOBICOM, 2013. [12] J. Wang, D. Vasisht and D. Katabi, RF-IDraw: Virtual Touch Screen in the Air Using RF Signals, in Proc. of ACM SIGCOMM, 2014. [13] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou and Y. Liu, STPP: Spatial-Temporal Phase Profiling-Based Method for Relative RFID Tag Localization, in IEEE/ACM Transactions on Networking (ToN), vol. 25, no. 1, pp. 596-609, 2017. [14] L. Xie, J. Sun, Q. Cai, C. Wang, J. Wu and S. Lu, Tell Me What I See: Recognize RFID Tagged Objects in Augmented Reality Systems, in Proc. of ACM UBICOMP, 2016. [15] J. Nickels, P. Knierim, B. Koenings, F. Schaub, B. Wiedersheim, S. Musiol, and M. Weber, Find My Stuff: Supporting Physical Objects Search with Relative Positioning, in Proc. of ACM MOBIQUITOUS, 2013. [16] J. Liu, B. Xiao, S. Chen, F. Zhu and L. Chen, Fast RFID grouping protocols, in Proc. of IEEE INFOCOM, 2015. [17] X. Liu, B. Xiao, S. Zhang and K. Bu, Unknown Tag Identification in Large RFID Systems: An Efficient and Complete Solution, IEEE Transactions on Parallel and Distributed System, vol. 26, no. 6, pp. 1775- 1788, 2015. [18] X. Liu, S. Zhang, B. Xiao and K. Bu, Flexible and Time-Efficient Tag Scanning with Handheld Readers, IEEE Transactions on Mobile Computing, vol. 15, no. 4, pp. 840-852, 2016. [19] J. Han, Q. Chen, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang and Z. Wang, Twins: Device-free Object Tracking using Passive Tags, in Proc. of IEEE INFOCOM, 2014. [20] L. Yang, J. Han, Y. Qi, C. Wang, T. Gu and Y. Liu, Season: Shelving interference and joint identification in large-scale rfid systems, in Proc. of IEEE INFOCOM, 2011