Chapter 0 Preface ≈v(1)At+v(t2)AMt+…y(x)At N ∑vG)A,扩A→>0.,N→>O N imn∑v)AM="(t △t→>0 N->∞l=l In general, the integral from a to b of flx)with respect to x is expressed as b f(xdx definite integral a f(r)dx indefinite integralChapter 1Chapter 1 Measurment Chapter 0 Preface t v t0 0 t i … S v t t v t t v t t ( 1 ) + ( 2 ) +...... ( N ) = → → = v t t if t N N i i ( ) , 0, 1 = = → → 0 0 1 0 lim ( ) ( ) t N i i N t S v t t v t dt … In general, the integral from a to b of f(x) with respect to x is expressed as: b a f (x)dx definite integral f (x)dx indefinite integral