正在加载图片...
·822· 北京科技大学学报 第36卷 不利影响四 吹煤气的渗透公式为B/R=0.8-0.85U/(U+). 80 (4)提高辅助风口的喷吹位置可以增大炉身喷 70 aA 吹气在炉内的渗透区域,抑制气流的边缘发展.但 oB 60 △C 是,从热交换角度,辅助风口设置在炉身较低部位更 50 ·D 加有利于炉身的间接还原. 40 ·E 30 参考文献 [1]Meijer K,Denys M,Lasar J,et al.ULCOS:ultra-ow CO,steel- 10 making.Ironmaking Steelmaking,2009,36(4):249 Birat J P,Hanrot F.ULCOS:European steelmakers'efforts to re- 102030405060708090100 duce green house gas emissions The 5th European Coke and 距高炉的中心距离/mm Ironmaking Congress.Stockholm,2005:12 图8辅助风口位置对喷吹煤气在喷吹水平线上分布的影响 B]Bellevrat E,Menanteau P.Introducing carbon constraint in the Fig.Influence of auxiliary tuyere location on the gas distribution at steel sector:ULCOS scenarios and economic modeling.Ree Met- the injection level all,2009,16(9):318 70 4 The Technical Society,The iron and steel Institute of Japan.Pro- 口A duction and technology of iron and steel in Japan during 2009. 60 oB SU1nt,2010,50(6):777 50 AC 5]Jianwei Y,Guolong S,Cunjiang K.Oxygen blast furnace and 40 D combined cycle (OBFCC):an efficient iron-making and power E 30 generation process.Energy,2003,28(8):825 [6]Hooey L,Wikstroml J O,Sikstrom P.The future of blast furnace 20 ironmaking:a Nordic perspective.World Steel,2011,11(1):1 10 (Hooey L,Wikstroml J O,Sikstrom P.高炉炼铁技术的未来: 0 北欧的研发.世界钢铁,2011,11(1):1) 0 1020304050607080 ) Ohno Y,Hotta H,Matsuura M,et al.Development of oxygen 距高炉的中心距离/mm blast fumace process with preheating gas injection into upper 图9辅助风口位置对喷吹煤气在料线附近(h=199mm)分布的 shaft.Tetsu-to-Hagane,1989,75(8):1278 影响 ⑧] Qi Y H,Yan D L,Gao JJ,et al.Study on industrial test of the Fig.9 Influence of auxiliary tuyere location on the gas distribution in oxygen blast fumnace.Iron Steel,2011,46(3):6 the vicinity of the stock line (h =199 mm) (齐渊洪,严定鎏,高建军,等.氧气高炉工业化试验研究 钢铁,2011,46(3):6) 3结论 Ariyama T,Sato M.Optimization of ironmaking process for reduc- ing CO,emissions in the integrated steel works.IS//Int,2006, (1)炉身喷吹煤气在喷吹方向上渗透区域较 46(12):1736 小,随着炉身测量位置的提高,煤气逐渐向高炉中心 [10]Chu M,Nogami H,Yagi J I.Numerical analysis on blast furnace performance under operation with top gas recycling and carbon 进行渗透,渗透区域逐渐增大,煤气上升过程中产生 composite agglomerates charging.IS//Int,2004,44(12):2159 的径向涡流扩散效应对喷吹煤气渗透区域影响 01] Nogami H.Chu M,Yagi JI.Numerical analysis of blast fumace 较小 operations with top gas recycling.Rev Metall,2005,102(3) (2)炉身煤气总量和辅助风口直径对炉身喷吹 189 煤气在炉内分布影响很小,炉身喷吹煤气量与炉身 [12]Han Y H,Wang J S,Xue Q G,et al.Kinetic analysis of iron 煤气总量之比是影响喷吹煤气在炉内分布的决定性 oxide reduction in top gas reeycling oxygen blast fumace.fron- making Steelmaking,2012,39(5):313 因素 03] Chu MS,Yang X F,Yagi JI,et al.Numerical simulation of in- (3)通过炉身等浓度图发现随着U/(U+V)增 novative operation of blast fumnace based on multi-fluid model.I 加,炉身喷吹煤气所覆盖的区域逐渐增大,当U/(U Iron Steel Res Int,2006.13(6):8 +)增加到0.7时认为整个炉身内部被炉身喷吹 [14]Natsui S,Ueda S,Nogami H,et al.Penetration effect of injec- 煤气所覆盖.同时,炉身内部基本上可以分成两个 ted gas at shaft gas injection in blast furnace analyzed by hybrid model of DEM-CFD.ISIJ /nt,2011,51(9)1410 不同的流动区域:喷吹煤气主流区和上升煤气主流 [15]Natsui S,Ueda S,Nogami H,et al.Dynamic analysis of gas and 区.此外,通过回归分析推导出炉身喷吹水平上喷 solid flows in blast furnace with shaft gas injection by hybrid mod-北 京 科 技 大 学 学 报 第 36 卷 不利影响[19]. 图 8 辅助风口位置对喷吹煤气在喷吹水平线上分布的影响 Fig. 8 Influence of auxiliary tuyere location on the gas distribution at the injection level 图 9 辅助风口位置对喷吹煤气在料线附近( h = 199 mm) 分布的 影响 Fig. 9 Influence of auxiliary tuyere location on the gas distribution in the vicinity of the stock line ( h = 199 mm) 3 结论 ( 1) 炉身喷吹煤气在喷吹方向上渗透区域较 小,随着炉身测量位置的提高,煤气逐渐向高炉中心 进行渗透,渗透区域逐渐增大,煤气上升过程中产生 的径向涡流扩散效应对喷吹煤气渗透区域影响 较小. ( 2) 炉身煤气总量和辅助风口直径对炉身喷吹 煤气在炉内分布影响很小,炉身喷吹煤气量与炉身 煤气总量之比是影响喷吹煤气在炉内分布的决定性 因素. ( 3) 通过炉身等浓度图发现随着 U/( U + V) 增 加,炉身喷吹煤气所覆盖的区域逐渐增大,当 U/( U + V) 增加到 0. 7 时认为整个炉身内部被炉身喷吹 煤气所覆盖. 同时,炉身内部基本上可以分成两个 不同的流动区域: 喷吹煤气主流区和上升煤气主流 区. 此外,通过回归分析推导出炉身喷吹水平上喷 吹煤气的渗透公式为 B /R = 0. 8 - 0. 85U/( U + V) . ( 4) 提高辅助风口的喷吹位置可以增大炉身喷 吹气在炉内的渗透区域,抑制气流的边缘发展. 但 是,从热交换角度,辅助风口设置在炉身较低部位更 加有利于炉身的间接还原. 参 考 文 献 [1] Meijer K,Denys M,Lasar J,et al. ULCOS: ultra-low CO2 steel￾making. Ironmaking Steelmaking,2009,36( 4) : 249 [2] Birat J P,Hanrot F. ULCOS: European steelmakers’efforts to re￾duce green house gas emissions / / The 5th European Coke and Ironmaking Congress. Stockholm,2005: 12 [3] Bellevrat E,Menanteau P. Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling. Rev Met￾all,2009,16( 9) : 318 [4] The Technical Society,The iron and steel Institute of Japan. Pro￾duction and technology of iron and steel in Japan during 2009. ISIJ Int,2010,50( 6) : 777 [5] Jianwei Y,Guolong S,Cunjiang K. Oxygen blast furnace and combined cycle ( OBF-CC) : an efficient iron-making and power generation process. Energy,2003,28( 8) : 825 [6] Hooey L,Wikstrml J O,Sikstrm P. The future of blast furnace ironmaking: a Nordic perspective. World Steel,2011,11( 1) : 1 ( Hooey L,Wikstrml J O,Sikstrm P. 高炉炼铁技术的未来: 北欧的研发. 世界钢铁,2011,11( 1) : 1) [7] Ohno Y,Hotta H,Matsuura M,et al. Development of oxygen blast furnace process with preheating gas injection into upper shaft. Tetsu-to-Hagane,1989,75( 8) : 1278 [8] Qi Y H,Yan D L,Gao J J,et al. Study on industrial test of the oxygen blast furnace. Iron Steel,2011,46( 3) : 6 ( 齐渊洪,严定鎏,高建军,等. 氧气高炉工业化试验研究. 钢铁,2011,46( 3) : 6) [9] Ariyama T,Sato M. Optimization of ironmaking process for reduc￾ing CO2 emissions in the integrated steel works. ISIJ Int,2006, 46( 12) : 1736 [10] Chu M,Nogami H,Yagi J I. Numerical analysis on blast furnace performance under operation with top gas recycling and carbon composite agglomerates charging. ISIJ Int,2004,44( 12) : 2159 [11] Nogami H,Chu M,Yagi J I. Numerical analysis of blast furnace operations with top gas recycling. Rev Metall,2005,102 ( 3) : 189 [12] Han Y H,Wang J S,Xue Q G,et al. Kinetic analysis of iron oxide reduction in top gas recycling oxygen blast furnace. Iron￾making Steelmaking,2012,39( 5) : 313 [13] Chu M S,Yang X F,Yagi J I,et al. Numerical simulation of in￾novative operation of blast furnace based on multi-fluid model. J Iron Steel Res Int,2006,13( 6) : 8 [14] Natsui S,Ueda S,Nogami H,et al. Penetration effect of injec￾ted gas at shaft gas injection in blast furnace analyzed by hybrid model of DEM-CFD. ISIJ Int,2011,51( 9) : 1410 [15] Natsui S,Ueda S,Nogami H,et al. Dynamic analysis of gas and solid flows in blast furnace with shaft gas injection by hybrid mod- ·822·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有