正在加载图片...
柳长昕等:面向船舶多种余热梯级利用的TEG-ORC联合循环性能 583. 于实现船舶主机烟气、主机缸套水、增压空气等 [9]Zheng X F,Liu C X,Yan YY,et al.Experimental study of a 多种余热的梯级利用.实验研究表明.在TEG/ORC domestic thermoelectric cogeneration system.Appl Therm Eng, 底循环比和工质流量不变以及工质蒸发压力在 2014.62(1):69 0.6~0.9MPa的工况下,实验系统的输出功率和热 [10]Liu C X,Li F M,Zhao C,et al.Experiment research of thermal electric power generation from ship incinerator exhaust heat.IOP 效率随工质蒸发压力的增加而增大,发电成本随 Conf Ser Earth Environ Sci,2019,227(2):022031 工质蒸发压力的增加而减少;此外,联合循环系统 [11]Yang M H,Yeh R H.Thermodynamic and economic performances 更好的利用了TEG单元冷端散热,提升系统余热 optimization of an organic Rankine cycle system utilizing exhaust 利用性能,使其热效率高于各底循环且发电成本 gas of a large marine diesel engine.Appl Energ,2015,149:1 低于各底循环.当工质蒸发压力为0.9MPa时,系 [12]Miller E W,Hendricks T J.Peterson R B.Modeling energy 统输出功率为139.22W,热效率为7.25%,发电成 recovery using thermoelectric conversion integrated with an 本为3.09¥(kW-h) organic Rankine bottoming cycle.J Electron Mater,2009,38(7): 1206 参考文献 [13]Miller E W,Hendricks T J,Wang H,et al.Integrated dual-cycle [1]Shu G Q.Liang Y C.Wei H Q,et al.A review of waste heat energy recovery using thermoelectric conversion and an organic Rankine bottoming cycle.Proc Inst Mech Eng Part AJ Power recovery on two-stroke IC engine aboard ships.Renew Sust Energ Reg,2013,19:385 Energy,201l,225(1):33 [2]He S C.The Development.Reformation and Prospect of the EU [14]Qiu K,Hayden A C S.Integrated thermoelectric and organic Emission Trade Scheme [Dissertation].Changchun:Jilin Rankine cycles for micro-CHP systems.App/Energ,2012,97:667 University,2016 [15]Shu G Q,Zhao J,Tian H,et al.Parametric and exergetic analysis (何少琛.欧盟碳排放交易体系发展现状、改革方法及前景[学 of waste heat recovery system based on the thermoelectric 位论文].长春:吉林大学,2016) generator and organic rankine cycle utilizing R123.Energy,2012, [3]Georgopoulou C A,Dimopoulos GG,Kakalis N M P.A modular 45(1):806 dynamic mathematical model of thermoelectric elements for [16]Shu G Q,Zhoa J,Tian H,et al.Theoretical analysis of engine marine applications.Energy,2016,94:13 waste heat recovery by the combined thermo-generator and [4]Huang K,Yan YY,Li B,et al.A novel design of thermoelectric organic Rankine cycle system /SAE Technical Papers,2012 generator for automotive waste heat recovery.Automorive [17]Ye WX,Liu C X,Liu J H,et al.Experimental research of ship Innovation,2018,1(1):54 waste heat utilization by TEG-ORC combined cycle.J X'An [5]Huang K,Li B,Yan YY,et al.A comprehensive study on a novel Jiaotong Univ.2020,54(8):50 concentric cylindrical thermoelectric power generation system. [18]Liu C X,Ye W X,Li H A,et al.Experimental study on cascade Appl Therm Eng,2017,117:501 utilization of ship's waste heat based on TEG-ORC combined [6]Liu CX.Pan XX.Zheng X F,et al.An experimental study of a cycle.Int J Energ Res.https://doi.org/10.1002/er.6083 novel prototype for two-stage thermoelectric generator from [19]Oralli E.Comversion of a Scroll Compressor to an Expander for vehicle exhaust.JEnergy Inst,016,89(2):271 Organic Rankine Cycle:Modeling and Analysis[Dissertation] [7]Liu C X,Li W Z.An experimental study of a novel prototype for Toronto:University of Ontario Institute of Technology,2010 thermoelectric power generation from vehicle exhaust.Distrib [20]Saghlatoun S.Investigation of a Scroll Compressor as an ORC Generat Alternat Energy J,2013,28(4):32 Expander for IC Engine Waste Heat Recovery[Dissertation] [8]Liu C X,Li W Z.An experimental study of a two-stage Beijing:Tsinghua University,2015 thermoelectric generator using heat pipe in vehicle exhaust.Distrib (美丽鱼,将旋转压缩机作为内燃机废热回收ORC膨胀机的研 Generat Alternat EnergyJ,015,30(1):15 究学位论文].北京:清华大学,2015)于实现船舶主机烟气、主机缸套水、增压空气等 多种余热的梯级利用. 实验研究表明,在 TEG/ORC 底循环比和工质流量不变以及工质蒸发压力在 0.6~0.9 MPa 的工况下,实验系统的输出功率和热 效率随工质蒸发压力的增加而增大,发电成本随 工质蒸发压力的增加而减少;此外,联合循环系统 更好的利用了 TEG 单元冷端散热,提升系统余热 利用性能,使其热效率高于各底循环且发电成本 低于各底循环. 当工质蒸发压力为 0.9 MPa 时,系 统输出功率为 139.22 W,热效率为 7.25%,发电成 本为 3.09 ¥·(kW·h)–1 . 参    考    文    献 Shu G Q, Liang Y C, Wei H Q, et al. A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sust Energ Rev, 2013, 19: 385 [1] He S C. The Development, Reformation and Prospect of the EU Emission Trade Scheme [Dissertation]. Changchun: Jilin University, 2016 ( 何少琛. 欧盟碳排放交易体系发展现状、改革方法及前景[学 位论文]. 长春: 吉林大学, 2016) [2] Georgopoulou C A, Dimopoulos G G, Kakalis N M P. A modular dynamic mathematical model of thermoelectric elements for marine applications. Energy, 2016, 94: 13 [3] Huang K, Yan Y Y, Li B, et al. A novel design of thermoelectric generator for automotive waste heat recovery. Automotive Innovation, 2018, 1(1): 54 [4] Huang K, Li B, Yan Y Y, et al. A comprehensive study on a novel concentric cylindrical thermoelectric power generation system. Appl Therm Eng, 2017, 117: 501 [5] Liu C X, Pan X X, Zheng X F, et al. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. J Energy Inst, 2016, 89(2): 271 [6] Liu C X, Li W Z. An experimental study of a novel prototype for thermoelectric power generation from vehicle exhaust. Distrib Generat Alternat Energy J, 2013, 28(4): 32 [7] Liu C X, Li W Z. An experimental study of a two-stage thermoelectric generator using heat pipe in vehicle exhaust. Distrib Generat Alternat Energy J, 2015, 30(1): 15 [8] Zheng X F, Liu C X, Yan Y Y, et al. Experimental study of a domestic thermoelectric cogeneration system. Appl Therm Eng, 2014, 62(1): 69 [9] Liu C X, Li F M, Zhao C, et al. Experiment research of thermal electric power generation from ship incinerator exhaust heat. IOP Conf Ser Earth Environ Sci, 2019, 227(2): 022031 [10] Yang M H, Yeh R H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl Energ, 2015, 149: 1 [11] Miller E W, Hendricks T J, Peterson R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle. J Electron Mater, 2009, 38(7): 1206 [12] Miller E W, Hendricks T J, Wang H, et al. Integrated dual-cycle energy recovery using thermoelectric conversion and an organic Rankine bottoming cycle. Proc Inst Mech Eng Part A J Power Energy, 2011, 225(1): 33 [13] Qiu K, Hayden A C S. Integrated thermoelectric and organic Rankine cycles for micro-CHP systems. Appl Energ, 2012, 97: 667 [14] Shu G Q, Zhao J, Tian H, et al. Parametric and exergetic analysis of waste heat recovery system based on the thermoelectric generator and organic rankine cycle utilizing R123. Energy, 2012, 45(1): 806 [15] Shu G Q, Zhoa J, Tian H, et al. Theoretical analysis of engine waste heat recovery by the combined thermo-generator and organic Rankine cycle system // SAE Technical Papers, 2012 [16] Ye W X, Liu C X, Liu J H, et al. Experimental research of ship waste heat utilization by TEG-ORC combined cycle. J Xi’ An Jiaotong Univ, 2020, 54(8): 50 [17] Liu C X, Ye W X, Li H A, et al. Experimental study on cascade utilization of ship ’s waste heat based on TEG-ORC combined cycle. Int J Energ Res, https://doi.org/10.1002/er.6083 [18] Oralli E. Conversion of a Scroll Compressor to an Expander for Organic Rankine Cycle: Modeling and Analysis[Dissertation]. Toronto: University of Ontario Institute of Technology, 2010 [19] Saghlatoun S. Investigation of a Scroll Compressor as an ORC Expander for IC Engine Waste Heat Recovery[Dissertation]. Beijing: Tsinghua University, 2015 ( 美丽鱼. 将旋转压缩机作为内燃机废热回收ORC膨胀机的研 究[学位论文]. 北京: 清华大学, 2015) [20] 柳长昕等: 面向船舶多种余热梯级利用的 TEG-ORC 联合循环性能 · 583 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有