正在加载图片...
Hybrid Devices from Nanowire Assemblies sma and Ni/In/Au contact electrodes were thermally evaporated from [6] a)Y. Cui, C M. Lieber, Science 2001, 291, 851; b)Y. Cui,Z. pure metals. Electrical transport measurements of individual hong, D Wang, W U. Wang, C M. Lieber, Nano Lett. 2003, 3, NWs or crossed Nw junctions were made using a home-built 149 system with <1 pA noise under computer control [7] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett. 2002, 2, 101 Optoelectrical characterization: Photoluminescence (PL)of [8)YHuang,XDuan,Y. Cui,L.Lauhon,K.Kim, CMLieber,Sci- ence2001,294,1313 individual NWs and electroluminescence (ED) of crossed Nw [].Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 2001, junctions were characterized with a home-built microlumines cence instrument 5.17 PL or EL images were taken with a liquid. [10]M.Gudiksen, L.Lauhon,IWang, D.Smith, CMLieber, Nature nitrogen-cooled CCD camera, and the spectra were obtained by 2002,415,617 dispersing emission with a 150 linesmm-Igrating in a 300 mm (111 X. Duan, Y. Huang, R. Argarawal,C M. Lieber, Nature 2003, [12] P. Zhang, V.H. Crespi, E. Chang, S G. Louie, M. L. Cohen, Nature Quantum dot and dye experiments CdSe QDs were 2001,409,69 persed in hexane and then deposited over the nanoLED devices. [13]Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 2001, 291 An aqueous solution of propidium iodide(1 mg mL-; Molecular Probes, Inc. was deposited directly onto a substrate containing [14] a) Heterojunction Band Discontinuities(Ed F. Capasso, G.Mar- p-Si/n-CdS NW nanoLEDs. Spectra were recorded from the Nw garitondo), North-Holland, Amsterdam, 1987; b)M. Leibovitch, cross points as described above and previously 6 17 The emis- L. Kronik, E. Fefer, V. Korobov, Y. Shapiraa, Appl. Phys. Lett 1995,66,457 sion spectrum of the propidium iodide aqueous solution was re- 15] a)X. Duan, C.M. Lieber, Adv Mater. 2000, 12, 298; b)X. Duan, corded using a commercial instrument ( Fluorolog, ISA/Jobir C M. Lieber, / Am. Chem. Soc. 2000, 122, 188; c)Y Cui, LJ Yvon-Spex) auhon, M. s. Gudiksen, ). Wang, C. M. Lieber, Appl. Phys. Lett. 1, [16] Photoluminescence measurements were made on individual NWs using a home-built microluminescence instrument. 5. 17 The ata recorded on GaN, Cds, CdSes, CdSe, and InP Nws typically howed luminescence maxima of≈370,≈510,≈600,≈700, and 820 nm, respectively, which are consistent with the bulk [1] a)I. Hu, T. C M. Lieber. A em.Res.1999,32, emiconductor bandgaps. The emission from InP NWs is blue- 435; b)C M. Lieber, Sci. Am. 2001 (September), 58; c)CM shifted due to quantum confinement and other factors. 5.17 17] M.S. Gudiksen, J. Wang, C M. Lieber, /. Phys. Chem. B 2002, M. Lieber in Molecular Nanoelectronics(Eds M. A. Reed, T. 106,4036 ee), American Scientific Publishers, New York, 2003, pp. 19 [18] Transport measurements were made on GaN, CdS, CdSes 227; e)Y Cui, X Duan, Y. Huang, C M. Lieber in Nanowires and CdSe, and InP NWs in FET geometry with a back gate as descri- Nanobelts-Materials, Properties and Devices(Ed Z L Wang ed previously 5-8 In all cases, positive gate voltage increases Publishers, Dordrecht, 2003, pp the conductance, and negative gate voltages decrease the con- [2] a)A P. Alivisatos, Science 1996, 271, 933; b)Z L Wang, Adv. The carrier mobility of each material is estimated from the trans- Mater. 1998, 10, 13; c)M. NirmaL, L. Brus, Acc. Chem. Res. conductance with values GaN, 150-650 cm'V-ls: CdS. CdSSe 1999,32,407;dC.B. Murray,C.R. n. M.G. Bawendi c.2000,30,545;e)W.J Parak, D Gerion, [1910. Madelung in LANDOLT-BORNSTEIN New Series: Vol /22a, T. Pellegrino, D. Zanchet, C. Micheel, S C. Williams, R. Bou- Semiconductors: Intrinsic properties of Group /V Elements and dreau, M.A. Le gros, C l1l-V and Il-VI and I-Vll Compounds(Ed. 0. Madelung), Spring ology 2003, 14, 15: f M. A. El-Sayed, Acc. Chem. Res. 2004 7,326 [20] Electrons are injected efficiently into the SiNW(from n-GaN NW) [3] a)Z. Yao, C. Dekker, P Avouris pl.Phys.2001,80,147 at the initial diode turm-on voltage of 1 V. Measurements in b)P L. McEuen, M.S. Fuhrer, H. Park, IEEE Trans. Nanotechnol hich the spectrometer detection range was extended to 2002,1,78;c)H.Dai,Ac.Chem.Res.2002,35,1035. 1000 nm showed no evidence for bandgap emission from the [4] a)SJ. Tans, R.M. SiNWs above the e1 V threshold 49; b)R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris [21]X. Duan, C. Niu, V. Sahi, 1. Chen, W. Parce, S. Empedocles, ). Appl. Phys. Lett. 1998, 73, 2447. a V. Derycke, R. MartelL, 1. Ap: (22)S RWhaley, D.S. English, E. L. Hu, P. F. Barbara, A M. Belcher Guo, Q Wang, M. Lundstrom, H Dai, Nature 2003, 424, 654. Nature2000,405,665 [5]X. Duan, Y. Huang, Y. Cui, I Wang, 09,66. Published online on October 15, 2004 l2005,1,No.1 www.small-journalcom o 2005 Wiley-VCH Verlag GmbH& Co KGaA, D-69451 Weinheim 147and Ni/In/Au contact electrodes were thermally evaporated from pure metals. Electrical transport measurements of individual NWs or crossed NW junctions were made using a home-built system with <1 pA noise under computer control. Optoelectrical characterization: Photoluminescence (PL) of individual NWs and electroluminescence (EL) of crossed NW junctions were characterized with a home-built microlumines￾cence instrument.[5, 17] PL or EL images were taken with a liquid￾nitrogen-cooled CCD camera, and the spectra were obtained by dispersing emission with a 150 linesmm1 grating in a 300 mm spectrometer. Quantum dot and dye experiments: CdSe QDs were dis￾persed in hexane and then deposited over the nanoLED devices. An aqueous solution of propidium iodide (1 mgmL1 ; Molecular Probes, Inc.) was deposited directly onto a substrate containing p-Si/n-CdS NW nanoLEDs. Spectra were recorded from the NW cross points as described above and previously.[6, 17] The emis￾sion spectrum of the propidium iodide aqueous solution was re￾corded using a commercial instrument (Fluorolog, ISA/Jobin Yvon-Spex). [1] a) J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435 ; b) C. M. Lieber, Sci. Am. 2001 (September), 58 ; c) C. M. Lieber, MRS Bull. 2003 (July), 486 ; d) X. Duan, Y. Huang, Y. Cui, C. M. Lieber in Molecular Nanoelectronics (Eds.: M. A. Reed, T. Lee), American Scientific Publishers, New York, 2003, pp. 199 – 227; e) Y. Cui, X. Duan, Y. Huang, C. M. Lieber in Nanowires and Nanobelts—Materials, Properties and Devices (Ed.: Z. L. Wang), Kluwer Academic/Plenum Publishers, Dordrecht, 2003, pp. 3 – 68. [2] a) A. P. Alivisatos, Science 1996, 271, 933 ; b) Z. L. Wang, Adv. Mater. 1998, 10, 13 ; c) M. Nirmal, L. Brus, Acc. Chem. Res. 1999, 32, 407; d) C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545 ; e) W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Bou￾dreau, M. A. Le Gros, C. A. Larabell, A. P. Alivisatos, Nanotech￾nology 2003, 14, 15 ; f) M. A. El-Sayed, Acc. Chem. Res. 2004, 37, 326. [3] a) Z. Yao, C. Dekker, P. Avouris, Top. Appl. Phys. 2001, 80, 147; b) P. L. McEuen, M. S. Fuhrer, H. Park, IEEE Trans. Nanotechnol. 2002, 1, 78 ; c) H. Dai, Acc. Chem. Res. 2002, 35, 1035. [4] a) S. J. Tans, R. M. Verschueren, C. Dekker, Nature 1998, 393, 49 ; b) R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 1998, 73, 2447; c) V. Derycke, R. Martel, J. Ap￾penzeller, P. Avouris, Nano Lett. 2001, 1, 453 ; d) A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 2003, 424, 654. [5] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66. [6] a) Y. Cui, C. M. Lieber, Science 2001, 291, 851; b) Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 2003, 3, 149. [7] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett. 2002, 2, 101. [8] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C. M. Lieber, Sci￾ence 2001, 294, 1313. [9] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 2001, 294, 1317. [10] M. Gudiksen, L. Lauhon, J. Wang, D. Smith, C. M. Lieber, Nature 2002, 415, 617. [11] X. Duan, Y. Huang, R. Argarawal, C. M. Lieber, Nature 2003, 421, 241. [12] P. Zhang, V. H. Crespi, E. Chang, S. G. Louie, M. L. Cohen, Nature 2001, 409, 69. [13] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 2001, 291, 630. [14] a) Heterojunction Band Discontinuities (Ed.: F. Capasso, G. Mar￾garitondo), North-Holland, Amsterdam, 1987; b) M. Leibovitch, L. Kronik, E. Fefer, V. Korobov, Y. Shapiraa, Appl. Phys. Lett. 1995, 66, 457. [15] a) X. Duan, C. M. Lieber, Adv. Mater. 2000, 12, 298 ; b) X. Duan, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 188 ; c) Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 2001, 78, 2214. [16] Photoluminescence measurements were made on individual NWs using a home-built microluminescence instrument.[5,17] The data recorded on GaN, CdS, CdSeS, CdSe, and InP NWs typically showed luminescence maxima of 370, 510, 600, 700, and 820 nm, respectively, which are consistent with the bulk semiconductor bandgaps. The emission from InP NWs is blue￾shifted due to quantum confinement and other factors.[5,17] [17] M. S. Gudiksen, J. Wang, C. M. Lieber, J. Phys. Chem. B 2002, 106, 4036. [18] Transport measurements were made on GaN, CdS, CdSeS, CdSe, and InP NWs in FET geometry with a back gate as descri￾bed previously.[5-8] In all cases, positive gate voltage increases the conductance, and negative gate voltages decrease the con￾ductance of the NWs, which is consistent with n-type doping. The carrier mobility of each material is estimated from the trans￾conductance with values: GaN, 150–650 cm2 V1 s ; CdS, CdSSe, and CdSe, 100–400 cm2 V1 s ; and InP, 400–4000 cm2 V1 s. [19] O. Madelung in LANDOLT-BORNSTEIN New Series: Vol III/22a, Semiconductors: Intrinsic properties of Group IV Elements and III–V and II–VI and I–VII Compounds (Ed.: O. Madelung), Spring￾er, Heidelberg, 1987. [20] Electrons are injected efficiently into the SiNW (from n-GaN NW) at the initial diode turn-on voltage of 1 V. Measurements in which the spectrometer detection range was extended to 1000 nm showed no evidence for bandgap emission from the SiNWs above the 1 V threshold. [21] X. Duan, C. Niu, V. Sahi, J. Chen, W. Parce, S. Empedocles, J. Goldman, Nature 2003, 425, 274. [22] S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665. Published online on October 15, 2004 small 2005, 1, No. 1 www.small-journal.com < 2005 Wiley-VCH Verlag GmbH & Co. KGaA, D-69451 Weinheim 147 Hybrid Devices from Nanowire Assemblies
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有