正在加载图片...
第6期 朱维耀等:纳微米级孔隙气体流动数学模型及应用 ·715· 体扩散系数下,随着压力平方差的增大,气体流量增 38(2):229 加,并且增长趋势越来越快;而在相同的压力平方差 (杨建,康毅力,李前贵,等.致密砂岩气藏微观结构及渗流 下,扩散系数越大,气体流量越大 特征.力学进展,2008,38(2):229) B]Kamiadakis G E,Beskok A.Microflons and Nanoflous:Funda- 4结论 mentals and Simulation.Berlin:Springer,2001 4]Beskok A,Karniadakis G E.A model for flows in channels, (1)分析了不同尺度下的气体流动机制.不同 pipes,and ducts at micro and nano scales.Microscale Thermophys 的孔隙尺度和压力条件下对应流体所处的流态是不 Eng,1999,3(1):43 同的,即为连续流、滑移流、过渡流和自由分子流 Beskok A,Kamiadakis G.Rarefaction and compressibility effects in gas microflows.Fluids Eng,1996,118(3)448 根据克努森数来判断流体的流态,阐明了不同区域 [6 Florence F A,Rushing J A,Newsham K E,et al.Improved per- 流动机理和流态特征,绘制了流态图版,并对其流态 meability prediction relations for low-permeability sands//Rocky 进行分析. Mountain Oil Gas Technology Symposium.Denver,2007:16 (2)基于Beskok-Karniadakis模型,引入多项式 Yang J,Kang Y L,Sang Y,et al.Research on diffusibility of the gas in tight sand gas reservoir.J Southuest Pet Univ Sci Technol 修正系数,对Beskok-Karniadakis模型得到的渗透 Ed,2009,31(6):76 率校正系数进行改进,将其简化为含有修正系数的 (杨建,康毅力,桑宇,等。致密砂岩天然气扩散能力研究 二项式方程,利用最小二乘法分段拟合,得到不同流 西南石油大学学报:自然科学版,2009,31(6):76) 态下修正系数a的取值,既简化了模型,又保证了计 8] Civan F.A triple-mechanism fractal model with hydraulic disper- 算的精确度.建立了纳微米级孔隙多孔介质内气体 sion for gas permeation in tight reservoirs /SPE International Pe- 流动模型. troleum Conference and Exhibition in Mexico.Villahermosa,2002 7 Lin L,Wang A G,Zhang XX.Prediction of flow and heat trans- (3)选取孔喉直径在2~40nm的南方海相露天 fer in rough micro channels with direct simulation Monte Carlo 区下志留统龙马溪组钻井取心样品,进行了室内微 method.J Unir Sci Technol Beijing,2010,32(3):384 观渗流模拟实验.微观渗流模拟实验所测得的数据 (林林,王爱国,张欣欣粗糙微通道内稀薄气体流动与换热的蒙 点,与采用纳微米级孔隙气体流动模型计算所得渗 特卡洛直接模拟.北京科技大学学报,2010,32(3):384) [10]Javadpour F,Fisher D,Unsworth M,et al.Nanoscale gas flow 流特征曲线进行了对比,可以看出实验数据与模型 in shale gas sediments.J Can Pet Technol,2007,46(10):55 计算结果拟合得很好,说明本模型具有较高的精确 11]Ziarani A S,Aguilera R.Knudsen's permeability correction for 度,可用于工程实际 tight porous media.Transp Porous Media,2012,91(1):239 (4)应用本文得到的纳微米级孔隙多孔介质内 [12]Roy S,Raju R,Chuang H F,et al.Modeling gas flow through 气体流量公式,代入实例进行分析.研究发现:气体 microchannels and nanopores.J Appl Phys,2003,93(8):4870 流量随压差增加而增大,且增加趋势逐渐加快;气体 [13]Michel GG,Sigal R F,Civan F,et al.Parametric investigation of shale gas production considering nanocale pore size distribu- 流量受多孔介质渗透率和克努森扩散系数的影响, tion,formation factor,and non-arcy flow mechanisms /SPE 随着渗透率和克努森扩散系数增加而增大. Annual Technical Conference and Exhibition.Denver,2011:1 [14]Freeman C M,Moridis G J,Blasingame T A.A numerical study 参考文献 of microscale flow behavior in tight gas and shale gas reservoir [Wang H L,Chai Z H,Guo Z L.Lattice Boltzmann simulation of systems.Transp Porous Media,2011,90(1):253 gas transfusion in compact porous media.Chin J Comput Phys, 5]Guggenheim E A.Element of the Kinetic Theory of Gases.Ist Ed. 2009,26(3):389 New York:Pergamon Press,1960 (王华龙,柴振华,郭照立.致密多孔介质中气体渗流的格子 6]Civan F.A review of approaches for deseribing gas transfer Boltzmann模拟.计算物理,2009,26(3):389) through extremely tight porous media /Porous Media and Its Ap- 2]Yang J,Kang Y L,Li Q G,et al.Characters of micro-structure plications in Science,Engineering,and Industry:3rd Internation- and percolation in tight sandstone gas reservoirs.Adr Mech,2008, al Conference.Montecatini,2010:53第 6 期 朱维耀等: 纳微米级孔隙气体流动数学模型及应用 体扩散系数下,随着压力平方差的增大,气体流量增 加,并且增长趋势越来越快; 而在相同的压力平方差 下,扩散系数越大,气体流量越大. 4 结论 ( 1) 分析了不同尺度下的气体流动机制. 不同 的孔隙尺度和压力条件下对应流体所处的流态是不 同的,即为连续流、滑移流、过渡流和自由分子流. 根据克努森数来判断流体的流态,阐明了不同区域 流动机理和流态特征,绘制了流态图版,并对其流态 进行分析. ( 2) 基于 Beskok--Karniadakis 模型,引入多项式 修正系数,对 Beskok--Karniadakis 模型得到的渗透 率校正系数进行改进,将其简化为含有修正系数的 二项式方程,利用最小二乘法分段拟合,得到不同流 态下修正系数 a 的取值,既简化了模型,又保证了计 算的精确度. 建立了纳微米级孔隙多孔介质内气体 流动模型. ( 3) 选取孔喉直径在 2 ~ 40 nm 的南方海相露天 区下志留统龙马溪组钻井取心样品,进行了室内微 观渗流模拟实验. 微观渗流模拟实验所测得的数据 点,与采用纳微米级孔隙气体流动模型计算所得渗 流特征曲线进行了对比,可以看出实验数据与模型 计算结果拟合得很好,说明本模型具有较高的精确 度,可用于工程实际. ( 4) 应用本文得到的纳微米级孔隙多孔介质内 气体流量公式,代入实例进行分析. 研究发现: 气体 流量随压差增加而增大,且增加趋势逐渐加快; 气体 流量受多孔介质渗透率和克努森扩散系数的影响, 随着渗透率和克努森扩散系数增加而增大. 参 考 文 献 [1] Wang H L,Chai Z H,Guo Z L. Lattice Boltzmann simulation of gas transfusion in compact porous media. Chin J Comput Phys, 2009,26( 3) : 389 ( 王华龙,柴振华,郭照立. 致密多孔介质中气体渗流的格子 Boltzmann 模拟. 计算物理,2009,26( 3) : 389) [2] Yang J,Kang Y L,Li Q G,et al. Characters of micro-structure and percolation in tight sandstone gas reservoirs. Adv Mech,2008, 38( 2) : 229 ( 杨建,康毅力,李前贵,等. 致密砂岩气藏微观结构及渗流 特征. 力学进展,2008,38( 2) : 229) [3] Karniadakis G E,Beskok A. Microflows and Nanoflows: Funda￾mentals and Simulation. Berlin: Springer,2001 [4] Beskok A,Karniadakis G E. A model for flows in channels, pipes,and ducts at micro and nano scales. Microscale Thermophys Eng,1999,3( 1) : 43 [5] Beskok A,Karniadakis G. Rarefaction and compressibility effects in gas microflows. Fluids Eng,1996,118( 3) : 448 [6] Florence F A,Rushing J A,Newsham K E,et al. Improved per￾meability prediction relations for low-permeability sands / / Rocky Mountain Oil & Gas Technology Symposium. Denver,2007: 16 [7] Yang J,Kang Y L,Sang Y,et al. Research on diffusibility of the gas in tight sand gas reservoir. J Southwest Pet Univ Sci Technol Ed,2009,31( 6) : 76 ( 杨建,康毅力,桑宇,等. 致密砂岩天然气扩散能力研究. 西南石油大学学报: 自然科学版,2009,31( 6) : 76) [8] Civan F. A triple-mechanism fractal model with hydraulic disper￾sion for gas permeation in tight reservoirs / / SPE International Pe￾troleum Conference and Exhibition in Mexico. Villahermosa,2002 [9] Lin L,Wang A G,Zhang X X. Prediction of flow and heat trans￾fer in rough micro channels with direct simulation Monte Carlo method. J Univ Sci Technol Beijing,2010,32( 3) : 384 ( 林林,王爱国,张欣欣. 粗糙微通道内稀薄气体流动与换热的蒙 特卡洛直接模拟. 北京科技大学学报,2010,32( 3) : 384) [10] Javadpour F,Fisher D,Unsworth M,et al. Nanoscale gas flow in shale gas sediments. J Can Pet Technol,2007,46( 10) : 55 [11] Ziarani A S,Aguilera R. Knudsen’s permeability correction for tight porous media. Transp Porous Media,2012,91( 1) : 239 [12] Roy S,Raju R,Chuang H F,et al. Modeling gas flow through microchannels and nanopores. J Appl Phys,2003,93( 8) : 4870 [13] Michel G G,Sigal R F,Civan F,et al. Parametric investigation of shale gas production considering nano-scale pore size distribu￾tion,formation factor,and non-Darcy flow mechanisms / / SPE Annual Technical Conference and Exhibition. Denver,2011: 1 [14] Freeman C M,Moridis G J,Blasingame T A. A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems. Transp Porous Media,2011,90( 1) : 253 [15] Guggenheim E A. Element of the Kinetic Theory of Gases. 1st Ed. New York: Pergamon Press,1960 [16] Civan F. A review of approaches for describing gas transfer through extremely tight porous media / / Porous Media and Its Ap￾plications in Science,Engineering,and Industry: 3rd Internation￾al Conference. Montecatini,2010: 53 ·715·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有