Table 1 Computative results of some problems with combination of algorithm Computational results of Computational results of original algorithm succeded algorithm problem Values of f(x) No. et Valucs of f(x) (algorithm used in) (algorithm used in 9 -5.055100(MDRP) 2,0×10-2 -5.157810(MDCP) 0 16 -0.937150(MDCP) 8,1×10-2 -0.944750(MDHP) 0 26 2667.482(MDCP) 2.8×10-2 2595.754(MDOD) 0 27 317.0819(MDOD) 7.7×10-2 289,3374(MDCP) 0 400 minf¥归100(名-x1-x2)2 100 MDHP 8,t,-1006*;≤100i1,2 地约 100 80 Ai FUN MDCP 10.00011936 60 20.001641 50.0149% 40.1 279 40 51.0129 20 x*=f1.0,1.01 f(x)=0.0 0 Alternative number 102 5×10-21035×10- 10-4 400 1000 18002000 Relative error of FUN ob jective function Fig.5 Number of problems solved versus Fig.6 Convergent speed for different the computational accuracy quasi-discrete increment A ness of solving discrete variable problems. In addition,the package MOD were also found to solve with high effecti- veness on a wide variety of all continuous variable probloms after they are discretized,as an example of the mathmatical problem shown in Fig.7 If all continuous variables have been discretized with the same discrete interval,the diffrent quasi-discrele increment 4:will influence the convergent speed, 4 Examples of Application As the examples of using package MOD,let us consider the optimal desi- gn for TDC Type gear-cylinder of the conveger,there are three types and forty variations.The transimission sketch illustrated in Fig.7(a)is a two- stage in-and out-meshing gear drive.Now it is required to have the ma- ximum loading ability on each stage and to equalize them with each other,For example,when the cylinder in diameter 500mm and the input speed is 906r/min we have obtained the following optimum by the package MOD:m=3mm, 346亡 动 。 五 呈 已 巴 一 。 一 。 。 。 。 一 。 一 , 。 一 , 一 一 一 。 一 。 。 。 , 口, 曰口 卜 千律 一 ’ 、 、 苍界二 阳尺尸 ,,卜、 ‘ 二 一 、︵姚 兄幻 ︺欲‘﹄。忿州叫 瓦料粼 姗牡厂 万为 。 。 今 。 。 「 公 扭 压 勺 一 △ , , 五 , 五 』 , 一 」‘ ,,、 人 , 一 , , 一 一 。 往 。 ,