正在加载图片...
·716* 工程科学学报,第41卷,第6期 割技术在实际临床应用中还不够成熟,如超声骨切 recent advances in numerical modelling of bone cutting.Mech 割存在能量传输效率低、稳定性差,手术时间延长等 Behav Biomed Mater,2015,44:179 ] 问题,这些问题的解决将会极大促进超声骨切割技 Takabi B,Tai B L.A review of cutting mechanics and modeling techniques for biological materials.Med Eng Phys,2017,45:I 术在医学领域的发展和应用. B]Birkenfeld F,Erika Becker M,Harder S,et al.Increased intrao- 4结论 sseous temperature caused by ultrasonic devices during bone sur- gery and the influences of working pressure and cooling irrigation. (1)骨切削数值仿真的本构模型有待完善.材 mlJ0 ral Max1mpl,2012,27(6):1382 4 料的力学特性与本构关系是切削仿真与切削机理研 Manerrnann W J,Sampathkumar P,Thompson R L Sternal 究的基础,而现有研究大多将骨简单地看成是类似 wound infections.Best Pract Res Clin Anaesthesiol,2008,22(3): 423 于金属的弹塑性均质材料,未把骨材料微结构和物 [5] Wiggins K L,Malkin S.Orthogonal machining of bone.Biomech 理特性考虑在内.现有的本构模型还不能准确有效 Eng,1978,100(3):122 地指导切削机理的研究 [6]Jacobs C H.Pope M H,Berry J T,et al.A study of the bone ma- (2)构建系统的骨材料切削理论以解释骨材料 chining process-orthogonal cutting./Biomech,1974,7(2):131 切屑形态的切削机理.切削过程中的切削力、切削 D]Krause W R.Orthogonal bone cutting:saw design and operating characteristics.J Biomech Eng,1987,109 (3):263 热现象主要由材料的切削变形产生.目前对骨材料 ⑧] Sui J B,Sugita N,Ishii K,et al.Force analysis of orthogonal cut- 切屑变形机理研究较少,各自观察到的切屑形态不 ting of bovine cortical bone.Mach Sci Technol,2013,17(4): 尽相同. 637 (3)骨材料切削刀具的开发需要进一步深化. 9]Alam K,Mitrofanov A V,Silberschmidt VV.Finite element anal- 相关研究大多集中在骨钻削的切削参数和刀具结构 ysis of forces of plane cutting of cortical bone.Comput Mater Sci, 2009,46(3):738 优化上,理论模型及结论尚欠完备性和普适性,没有 [10]Alam K,Mitrofanov A V,Silberschmidt VV.Thermal analysis 从根本上解决骨切削中的热损伤问题,事实上骨切 of orthogonal cutting of cortical bone using finite element simula- 削的热损伤是影响骨愈合的最直接因素.且现有研 tions.Int J Exp Comput Biomech,2010,1 (3):236 究只能局部降低切削力和温度,很少涉及如何提高 [11]Childs T H C,Arola D.Machining of cortical bone:Simulations 骨材料切削表面质量、另外临床上手术刀具经常需 of chip formation mechanics using metal machining models.Mach Sci Technol,2011,15(2):206 要清洗、消毒和杀菌,在一定程度上会加剧刀具磨 02] Santiuste C,Rodriguez-Millin M,Giner E,et al.The influence 损.骨材料刀具磨损的相关研究较少 of anisotropy in numerical modeling of orthogonal cutting of corti- (4)超声骨切削由于安全性高、损伤小、愈合快 cal bone.Compos Struct,2014,116:423 的特点将成为未来临床骨切割操作的发展方向和趋 [13]Li S,Zahedi A,Silberschmidt V,et al.Penetration of cutting 势.目前对骨材料切削工艺仍以传统的钻、铣和磨 tool into cortical bone:experimental and numerical investigation 削为主,超声骨切削尚处于起步阶段,很多问题需要 of anisotropic mechanical behaviour.JBiomech,2014,47:1117 [14]Feldmann A,Ganser P,Nolte L,et al.Orthogonal cutting of 系统和深入的研究,如超声效应与骨组织界面切削 cortical bone:Temperature elevation and fracture toughness.Int 机理尚不清楚,超声工作负载变化及其对换能器特 J Mach Tools Manuf,2017,118-19:1 性的影响规律还不明确等.此外,目前临床应用的 15] Yin J.Study on Simulation and Experiment of Micro Cutting of 超声骨切割普遍存在效率低,超声切骨稳定性差,手 Bone [Dissertation].Harbin:Harbin Institute of Technology, 术时间延长,能量传输效率低,只适用于局部或厚度 2016 (殷杰.骨骼微切削过程的有限元仿真与实验研究[学位论 小于3mm的骨组织切割等问题.因此,医工结合背 文].哈尔滨:哈尔滨工业大学,2016) 景下大振幅稳定超声骨切削研究将会推动超声切骨 16] Liao Z R,Axinte D A.On chip formation mechanism in orthogo- 在外科手术中更广泛的应用.总之,超声骨切削技 nal cutting of bone.Int J Mach Tools Manuf,2016,102:41 术在医学领域有显著优势和广阔的应用前景.超声 07] LiaoZ R.Research on Bone Cutting and A Novel Tool Derelop- 骨切割技术一旦成熟,必将开启医学临床骨切割的 ment [Dissertation].Harbin:Harbin Institute of Technology, 2017 新时代 (图志荣.骨材料切削加工及一种新型刀具研究[学位论 文].哈尔滨:哈尔滨工业大学,2017) 参考文献 [18]Cui H Y,Hu Y H,Wang C.Study on the prediction model of cutting temperature on cortical bone by micro-exture tool.Mach [Marco M,Rodriguez-Millan M,Santiuste C,et al.A review on Tool Hydraul,2015,43(23):31工程科学学报,第 41 卷,第 6 期 割技术在实际临床应用中还不够成熟,如超声骨切 割存在能量传输效率低、稳定性差,手术时间延长等 问题,这些问题的解决将会极大促进超声骨切割技 术在医学领域的发展和应用. 4 结论 ( 1) 骨切削数值仿真的本构模型有待完善. 材 料的力学特性与本构关系是切削仿真与切削机理研 究的基础,而现有研究大多将骨简单地看成是类似 于金属的弹塑性均质材料,未把骨材料微结构和物 理特性考虑在内. 现有的本构模型还不能准确有效 地指导切削机理的研究. ( 2) 构建系统的骨材料切削理论以解释骨材料 切屑形态的切削机理. 切削过程中的切削力、切削 热现象主要由材料的切削变形产生. 目前对骨材料 切屑变形机理研究较少,各自观察到的切屑形态不 尽相同. ( 3) 骨材料切削刀具的开发需要进一步深化. 相关研究大多集中在骨钻削的切削参数和刀具结构 优化上,理论模型及结论尚欠完备性和普适性,没有 从根本上解决骨切削中的热损伤问题,事实上骨切 削的热损伤是影响骨愈合的最直接因素. 且现有研 究只能局部降低切削力和温度,很少涉及如何提高 骨材料切削表面质量. 另外临床上手术刀具经常需 要清洗、消毒和杀菌,在一定程度上会加剧刀具磨 损. 骨材料刀具磨损的相关研究较少. ( 4) 超声骨切削由于安全性高、损伤小、愈合快 的特点将成为未来临床骨切割操作的发展方向和趋 势. 目前对骨材料切削工艺仍以传统的钻、铣和磨 削为主,超声骨切削尚处于起步阶段,很多问题需要 系统和深入的研究,如超声效应与骨组织界面切削 机理尚不清楚,超声工作负载变化及其对换能器特 性的影响规律还不明确等. 此外,目前临床应用的 超声骨切割普遍存在效率低,超声切骨稳定性差,手 术时间延长,能量传输效率低,只适用于局部或厚度 小于 3 mm 的骨组织切割等问题. 因此,医工结合背 景下大振幅稳定超声骨切削研究将会推动超声切骨 在外科手术中更广泛的应用. 总之,超声骨切削技 术在医学领域有显著优势和广阔的应用前景. 超声 骨切割技术一旦成熟,必将开启医学临床骨切割的 新时代. 参 考 文 献 [1] Marco M,Rodríguez-Milln M,Santiuste C,et al. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater,2015,44: 179 [2] Takabi B,Tai B L. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys,2017,45: 1 [3] Birkenfeld F,Erika Becker M,Harder S,et al. Increased intrao￾sseous temperature caused by ultrasonic devices during bone sur￾gery and the influences of working pressure and cooling irrigation. Int J Oral Max Impl,2012,27( 6) : 1382 [4] Manerrnann W J,Sampathkumar P,Thompson R L. Sternal wound infections. Best Pract Res Clin Anaesthesiol,2008,22( 3) : 423 [5] Wiggins K L,Malkin S. Orthogonal machining of bone. J Biomech Eng,1978,100( 3) : 122 [6] Jacobs C H,Pope M H,Berry J T,et al. A study of the bone ma￾chining process-orthogonal cutting. J Biomech,1974,7( 2) : 131 [7] Krause W R. Orthogonal bone cutting: saw design and operating characteristics. J Biomech Eng,1987,109( 3) : 263 [8] Sui J B,Sugita N,Ishii K,et al. Force analysis of orthogonal cut￾ting of bovine cortical bone. Mach Sci Technol,2013,17 ( 4) : 637 [9] Alam K,Mitrofanov A V,Silberschmidt V V. Finite element anal￾ysis of forces of plane cutting of cortical bone. Comput Mater Sci, 2009,46( 3) : 738 [10] Alam K,Mitrofanov A V,Silberschmidt V V. Thermal analysis of orthogonal cutting of cortical bone using finite element simula￾tions. Int J Exp Comput Biomech,2010,1( 3) : 236 [11] Childs T H C,Arola D. Machining of cortical bone: Simulations of chip formation mechanics using metal machining models. Mach Sci Technol,2011,15( 2) : 206 [12] Santiuste C,Rodríguez-Milln M,Giner E,et al. The influence of anisotropy in numerical modeling of orthogonal cutting of corti￾cal bone. Compos Struct,2014,116: 423 [13] Li S,Zahedi A,Silberschmidt V,et al. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech,2014,47: 1117 [14] Feldmann A,Ganser P,Nolte L,et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. Int J Mach Tools Manuf,2017,118-119: 1 [15] Yin J. Study on Simulation and Experiment of Micro Cutting of Bone[Dissertation]. Harbin: Harbin Institute of Technology, 2016 ( 殷杰. 骨骼微切削过程的有限元仿真与实验研究[学位论 文]. 哈尔滨: 哈尔滨工业大学,2016) [16] Liao Z R,Axinte D A. On chip formation mechanism in orthogo￾nal cutting of bone. Int J Mach Tools Manuf,2016,102: 41 [17] Liao Z R. Research on Bone Cutting and A Novel Tool Develop￾ment[Dissertation]. Harbin: Harbin Institute of Technology, 2017 ( 廖志荣. 骨材料切削加工及一种新型刀具研究[学 位 论 文]. 哈尔滨: 哈尔滨工业大学,2017) [18] Cui H Y,Hu Y H,Wang C. Study on the prediction model of cutting temperature on cortical bone by micro-texture tool. Mach Tool Hydraul,2015,43( 23) : 31 · 617 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有