正在加载图片...
思考与练习 1.设f(x)=(x-a)p(x),其中p(x)在x=a处连续 在求f'(a时,下列做法是否正确? f(x)p(x)+(x-a)e'(x) 故f'(a)=p(a) 正确解法:由于f(a)=0,故 f'(a)=lim f(x)-f(a) lim (x-a)o(x) x->a x-a x-→a x-a lim p(x)=p(a) x->a BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 录 返回 结束目录 上页 下页 返回 结束 1. 设 f (x)  (x  a)(x), 其中(x) 在 x  a 因 f (x)  (x)  (x  a)(x) 故 f (a)  (a)  x a f x f a f a x a      ( ) ( ) ( ) lim x a x a x x a     ( ) ( ) lim  lim (x) x a     (a) 正确解法: 在求 f (a) 时, 下列做法是否正确? 处连续, 由于 f (a) = 0,故 思考与练习
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有