正在加载图片...
吴佳松等:7075铝合金板材热冲压成形中的高温摩擦 1637 3结论 different tempers of AA7075 aluminium alloy.Electrochim Acta, 2004,49(17-18):2851 (1)摩擦系数随着下模温度升高而增大,这主 [9]Yang X M.Wang B Y,Xiao W C.et al.Prediction of forming 要归因于黏着和磨粒磨损造成的表面凹凸不平和 limit curve of 6016 aluminum alloy based on M-K theory.Chin 犁沟形貌.随着温度升高,磨损表面的黏着磨损增 Eg,2018,40(4):485 大,下模加热温度为500℃时还发生了氧化磨损 (杨晓明,王宝雨,校文超,等.基于M-K理论的6016铝合金成形 极限曲线预测.工程科学学报,2018.40(4):485) 和磨粒磨损 (2)法向载荷的增大使试样与模具实际接触 [10]Yang X Y,Lang L H,Liu K N,et al.Prediction of forming limit diagram of AA7075-O aluminum alloy sheet based on modified 面积增大,加剧了黏着磨损,导致摩擦系数增大 M-K model.JBeijing Univ Aeron Astron,2015,41(4):675 不同载荷下均发生黏着磨损和磨粒磨损,且黏着 (杨希英,郎利辉,刘康宁,等.基于修正M-K模型的铝合金板材 效应和犁沟形貌随着载荷增大而增加 成形极限图预测.北京航空航天大学学报,2015,41(4):675) (3)磨损表面氧化层的形成使得摩擦系数随 [11]Du P H,Lang L H,Liu B S,et al.Theoretical prediction and 着滑动速度增大而减小.与之相反,磨损程度却逐 parameter influence of FLDs based on M-K model.J Plast Eng. 渐增大,较小载荷下主要为黏着磨损,随着滑动速 2011,18(5):84 (杜平海,郎利辉,刘宝胜,等.基于M-K模型的成形极限预测及 度增大,磨损面出现氧化和犁削,速度较大时磨损 参数影响.塑性工程学报,2011,18(5):84) 机理为氧化磨损、磨粒磨损和黏着磨损 [12]Ma G S,Wan M.Wu X D.Theoretical prediction of FLDs for Al- Li alloy at elevated temperature based on M-K model.ChinJ 参考文献 Nonferrous Met,,2008,18(6):980 [1]Chegini M,Fallahi A,Shaeri M H.Effect of equal channel angular (马高山,万敏,吴向东.基于M-K模型的铝锂合金热态下成形 pressing (ECAP)on wear behavior of Al-7075 alloy.Procedia 极限预测.中国有色金属学报,2008,18(6):980) Mater Sci,2015,11:95 [13]He Z B,Fan X B,Yuan S J.Review of hot forming-quenching [2]Huttunen-Saarivirta E,KilpiL,Hakala T J,et al.Insights into the integrated process of aluminum alloy./Netshape Form Eng,2014. behaviour of tool steel-aluminium alloy tribopair at different 6(5):37 temperatures.Tribol Int,2018,119:567 (何祝斌凡晓波,苑世剑,铝合金板材热成形-淬火一体化工艺 [3]Hou L G,Zhao F,Zhuang L Z,et al.Retrogression and re-aging 研究进展.精密成形工程,2014,6(5):37) 7B50 Al alloy plates based on examining the through-thickness [14]Chen S C,Lai S Y,Gu R Y,et al.Aluminm Alloy Sheet Molding microstructures and mechanical properties.ChinJ Eng,2017. and Quenching Compound Forming Method and Integrated 39(3):432 Device:China Patent,CN201710291517.4.2017-10-27 (侯陇刚,赵凤,庄林忠,等.基于厚向组织性能考量的7B50铝 (陈世超,赖思肠,顾瑞莹,等.铝合金板材模压淬火复合成型方 合金中厚板回归再时效热处理.工程科学学报,2017,39(3): 法及其一体化装置:中国专利,CN201710291517.4.2017-10-27) 432) [15]Liu Y T,Mol J M C,Janssen G C A M.Combined corrosion and [4]Ma Y W,Wang B Y,Xiao WC,et al.Effect of solution and aging wear of aluminium alloy 7075-T6.J Bio Tribo-Corros,2016,2:9 processes on the mechanical properties of 6016 aluminum alloy [16]Pujante J,Pelcastre L,Vilaseca M,et al.Investigations into wear and multi-objective optimization.ChinJEng,2017,39(1):75 and galling mechanism of aluminium alloy-tool steel tribopair at (马严玮,王宝雨,校文超,等.固溶时效工艺对6016铝合金力学 different temperatures.Wear,2013,308(1-2):193 性能的影响及多目标优化.工程科学学报,2017,39(1):75) [17]Ghiotti A,Simonetto E,Bruschi S.Influence of process parameters [5]Laurino A,Andrieu E,Harouard J P,et al.Effect of corrosion on on tribological behaviour of AA7075 in hot stamping.Wear,2019, the fatigue life and fracture mechanisms of 6101 aluminum alloy 426-427:348 wires for car manufacturing applications.Mater Des,2014,53: [18]Kumar S,Sood P K.A comparative study of dry sliding wear 236 characterization of nano Sic and nano B4C filled Al7075 [6]Liu Q,Chen S C,Gu R Y,et al.Effect of heat treatment conditions nanocomposites under high temperature environment.Mater Res on mechanical properties and precipitates in sheet metal hot Epes,2019,6(5):056506 stamping of 7075 aluminum alloy.J Mater Eng Perform,2018, [19]Hag M I U,Anand A.Dry sliding friction and wear behavior of 27(9):4423 AA7075-SigNa composite.Silicon,2018,10(5):1819 [7]Shamsipur A,Asadkarami S.Microstructure and mechanical [20]Haq M I U,Anand A.Friction and wear behavior of properties of copper surface composite layers reinforced by nano AA7075-Si,Na composites under dry conditions:effect of sliding and microscale Sic particles via friction stir processing.Adv speed.Silicon,2019,11(2):1047 Compos Mater,2019,28(6):591 [21]Jiang F C,Gao K X,Wang W R.Development of a digital high- [8]Andreatta F,Terryn H,de Wit J H W.Corrosion behaviour of temperature friction and wear tester for simulating hot-stamping3    结论 (1)摩擦系数随着下模温度升高而增大,这主 要归因于黏着和磨粒磨损造成的表面凹凸不平和 犁沟形貌. 随着温度升高,磨损表面的黏着磨损增 大,下模加热温度为 500 ℃ 时还发生了氧化磨损 和磨粒磨损. (2)法向载荷的增大使试样与模具实际接触 面积增大,加剧了黏着磨损,导致摩擦系数增大. 不同载荷下均发生黏着磨损和磨粒磨损,且黏着 效应和犁沟形貌随着载荷增大而增加. (3)磨损表面氧化层的形成使得摩擦系数随 着滑动速度增大而减小. 与之相反,磨损程度却逐 渐增大,较小载荷下主要为黏着磨损,随着滑动速 度增大,磨损面出现氧化和犁削,速度较大时磨损 机理为氧化磨损、磨粒磨损和黏着磨损. 参    考    文    献 Chegini M, Fallahi A, Shaeri M H. Effect of equal channel angular pressing (ECAP) on wear behavior of Al –7075 alloy. Procedia Mater Sci, 2015, 11: 95 [1] Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures. Tribol Int, 2018, 119: 567 [2] Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432 (侯陇刚, 赵凤, 庄林忠, 等. 基于厚向组织性能考量的7B50铝 合金中厚板回归再时效热处理. 工程科学学报, 2017, 39(3): 432) [3] Ma Y W, Wang B Y, Xiao W C, et al. Effect of solution and aging processes on the mechanical properties of 6016 aluminum alloy and multi-objective optimization. Chin J Eng, 2017, 39(1): 75 (马严玮, 王宝雨, 校文超, 等. 固溶时效工艺对6016铝合金力学 性能的影响及多目标优化. 工程科学学报, 2017, 39(1):75) [4] Laurino A, Andrieu E, Harouard J P, et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des, 2014, 53: 236 [5] Liu Q, Chen S C, Gu R Y, et al. Effect of heat treatment conditions on mechanical properties and precipitates in sheet metal hot stamping of 7075 aluminum alloy. J Mater Eng Perform, 2018, 27(9): 4423 [6] Shamsipur A, Asadkarami S. Microstructure and mechanical properties of copper surface composite layers reinforced by nano and microscale SiC particles via friction stir processing. Adv Compos Mater, 2019, 28(6): 591 [7] [8] Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim Acta, 2004, 49(17-18): 2851 Yang X M, Wang B Y, Xiao W C, et al. Prediction of forming limit curve of 6016 aluminum alloy based on M–K theory. Chin J Eng, 2018, 40(4): 485 (杨晓明, 王宝雨, 校文超, 等. 基于M–K理论的6016铝合金成形 极限曲线预测. 工程科学学报, 2018, 40(4):485) [9] Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075 –O aluminum alloy sheet based on modified M–K model. J Beijing Univ Aeron Astron, 2015, 41(4): 675 (杨希英, 郎利辉, 刘康宁, 等. 基于修正M–K模型的铝合金板材 成形极限图预测. 北京航空航天大学学报, 2015, 41(4):675) [10] Du P H, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M–K model. J Plast Eng, 2011, 18(5): 84 (杜平海, 郎利辉, 刘宝胜, 等. 基于M–K模型的成形极限预测及 参数影响. 塑性工程学报, 2011, 18(5):84) [11] Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al￾Li alloy at elevated temperature based on M –K model. Chin J Nonferrous Met, 2008, 18(6): 980 (马高山, 万敏, 吴向东. 基于M–K模型的铝锂合金热态下成形 极限预测. 中国有色金属学报, 2008, 18(6):980) [12] He Z B, Fan X B, Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy. J Netshape Form Eng, 2014, 6(5): 37 (何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形-淬火一体化工艺 研究进展. 精密成形工程, 2014, 6(5):37) [13] Chen S C, Lai S Y, Gu R Y, et al. Aluminum Alloy Sheet Molding and Quenching Compound Forming Method and Integrated Device: China Patent, CN201710291517.4. 2017-10-27 (陈世超, 赖思旸, 顾瑞瑩, 等. 铝合金板材模压淬火复合成型方 法及其一体化装置: 中国专利, CN201710291517.4. 2017-10-27) [14] Liu Y T, Mol J M C, Janssen G C A M. Combined corrosion and wear of aluminium alloy 7075–T6. J Bio Tribo-Corros, 2016, 2: 9 [15] Pujante J, Pelcastre L, Vilaseca M, et al. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear, 2013, 308(1-2): 193 [16] Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping. Wear, 2019, 426-427: 348 [17] Kumar S, Sood P K. A comparative study of dry sliding wear characterization of nano SiC and nano B4C filled Al7075 nanocomposites under high temperature environment. Mater Res Express, 2019, 6(5): 056506 [18] Haq M I U, Anand A. Dry sliding friction and wear behavior of AA7075–Si3N4 composite. Silicon, 2018, 10(5): 1819 [19] Haq M I U, Anand A. Friction and wear behavior of AA7075–Si3N4 composites under dry conditions: effect of sliding speed. Silicon, 2019, 11(2): 1047 [20] Jiang F C, Gao K X, Wang W R. Development of a digital high￾temperature friction and wear tester for simulating hot-stamping [21] 吴佳松等: 7075 铝合金板材热冲压成形中的高温摩擦 · 1637 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有