正在加载图片...
焦克新等:高炉炉缸含钛保护层物相及TC。:N。,形成机理 ·197· (焦克新,张建良,刘征建,等.高炉炉缸凝铁层物相分析 3结论 工程科学学报,2017,39(6):838) [9]Zhang J L,Jiao K X,Liu Z J,et al.Comprehensive regulation (1)高炉炉缸侧壁最薄处炭砖残余厚度仅为 technology for hearth protective layer of blast furnace longevity. 200mm;炉缸炉底炭砖表面普遍存在含钛保护层, ron Steel,2017,52(12):1 保护层平均厚度在300~600mm,炉底部位同样形 (张建良,焦克新,刘征建,等.长寿高炉炉缸保护层综合调 成了较厚的保护层,最厚处达1000mm左右,钒钛矿 控技术.钢铁,2017,52(12):1) 护炉条件下高炉炉缸炉底均能形成保护层.高炉炉 [10]Li Y,Li Y Q,Fruehan R J.Formation of titanium carbonitride from hot metal.IS/J Int,2001,41(12)1417 缸不同部位形成的保护层中均含有大量的T(C,N) [11]Li Y,Fruehan R J.Thermodynamics of TiCN and TiC in Fe-C 和Fe相,且Ti(C,N)主要以TiC。.Na,形式存在,并 sat melts.Metall Mater Trans B,2001,32(6):1203 与Fe相聚集在一起. [12]Bai C G,Pei H N,Zhao SJ,et al.An investigation of the rela- (2)Ti(C,N)固溶体的标准摩尔生成吉布斯自 tionship between the particle size of titanium carbonitride and the 由能随着TC含量的增加呈现先降低后增加的趋 viscosity of blast fumace slag bearing high titania.fron Steel Van 势,且T(C,N)实际混合摩尔生成吉布斯自由能要 7it.1995,16(3):6 显著低于标准混合摩尔生成吉布斯自由能和理想混 (白晨光,裴鹤年,赵诗金,等.碳氨化钛粒度与熔渣粘度关 系的研究.钢铁钒钛,1995,16(3):6) 合摩尔生成吉布斯自由能.在不同温度条件下,TC [13]Zhen Y L,Zhang G H,Chou K C.Viscosity of Ca0-Mgo- 和TN在固溶体中存在的比例不同,高温时以析出 Al2O3-SiO-TiO2 melts containing TiC particles.Metall Mater TiC为主,低温时以析出TN为主. Trans B,2015,46(1):155 (3)高炉炉缸含钛保护层中存在的Ti(C,N)颗 [14]Zhen Y L,Zhang G H,Chou K C,et al.Influence of TiN on 粒是由TiC和TN形成的固溶体,Ti(C,N)固溶体 viscosity of Cao-Mgo-Al2 O;-Si02-(TiN)suspension system. 的形成与高炉热力学状态条件直接相关,高炉炉缸 Can Metall O,2015,54(3):340 含钛保护层中,T(C,N)固溶体中存在的物相为 [15]Liu Y X,Zhang J L,Zhang G H,et al.Influence of Ti(Ca3 Na7) TiC。.,Na.7,该固溶体在该高炉炉缸中的形成温度为 on viscosity of blast fumace slags.fronmak Steelmak,2017,44 1423℃. (8):609 [16]Wang X Q.Blast Furnace Smelting Vanadium Titanium Magne- 参考文献 tite.1st.Beijing:Metallurgical Industry Press,1994 (王喜庆.钒钛磁铁矿高炉冶炼.1版.北京:治金工业出版 [1]Jiao K X,Zhang J L,Liu Z J,et al.Analysis of blast furnace 社.1994) hearth sidewall erosion and protective layer formation.ISI/Int, [17]Song J C.Titanium Material Protection Technology.Beijing: 2016,56(11):1956 [2]Liu Z J,Zhang J L,Yang T J.Low carbon operation of super- Metallurgical Industry Press,1994 (宋建成.高炉含钛物料护炉技术.北京:治金工业出版社, large blast furnaces in China.IS//Int,2015,55(6):1146 1994) [3]Jiao K X,Zhang J L,Liu ZJ,et al.Properties and application of [18]Wada H,Pehlke R D.Nitrogen solubility and nitride formation carbon composite brick for blast fumnace hearth.J Min Metall Sect B-Metall,2015,51(2):143 in austenitic Fe-Ti alloys.Metall Trans B,1985,16(4):815 [19]Ozturk B,Fruehan R J.Thermodynamics of inclusion formation [4]Jiao K X,Zhang J L,Liu Z J,et al.Dissection investigation of Ti(C,N)behavior in blast fumace hearth during vanadium titano- in Fe-Ti-C-N alloys.Metall Trans B,1990,21(5):879 magnetite smelting.IS//Int,2017,57(1):48 [20]Sumito M,Tsuchiya N,Okabe K,et al.Solubility of titanium [5]Inada T,Kasai A,Nakano K,et al.Dissection investigation of and carbon in molten Fe-Ti alloys saturated with carbon.Trans blast furnace hearth-Kokura No.2 blast furnace (2nd campaign). Iron Steel Inst Jpn,1981,21(6):414 1S1U1nt,2009,49(4):470 [21]Jonsson S.Assessment of the Fe-Ti-C system calculation of the [6]Shinotake A,Nakamura H,Yadoumaru N,et al.Investigation of Fe-Ti-C system and prediction of the solubility limit of Ti(C,N) blast fumace hearth sidewall erosion by core sample analysis and in liquid Fe.Metall Mater Trans B,1998,29(2):371 consideration of campaign operation.IS/J Int,2003,43(3):321 [22]Morizane Y,Ozturk B,Fruehan R J.Thermodynamics of Tio,in [7]Takatani K,Inada T,Takata K.Mathematical model for transient blast furnace type slags.Metall Mater Trans B,1999,30(1 ) erosion process of blast fumnace hearth.IS//Int,2001,41(10): 29 1139 [23]Jung I J,Kang S,Jhi S H,et al.A study of the formation of [8]Jiao K X,Zhang J L.Liu Z J,et al.Analysis of the phase of the Ti(CN)solid solutions.Acta Mater,1999,47(11):3241 solid iron layer in blast furnace hearth.Chin J Eng,2017,39 [24]Jung IJ,Kang S.A study of the characteristics of Ti(CN)solid (6):838 solutions.J Mater Sci,2000,35(1):87焦克新等: 高炉炉缸含钛保护层物相及 TiC0郾 3N0郾 7形成机理 3 结论 (1)高炉炉缸侧壁最薄处炭砖残余厚度仅为 200 mm;炉缸炉底炭砖表面普遍存在含钛保护层, 保护层平均厚度在 300 ~ 600 mm,炉底部位同样形 成了较厚的保护层,最厚处达 1000 mm 左右,钒钛矿 护炉条件下高炉炉缸炉底均能形成保护层. 高炉炉 缸不同部位形成的保护层中均含有大量的 Ti(C, N) 和 Fe 相,且 Ti(C, N)主要以 TiC0郾 3N0郾 7形式存在,并 与 Fe 相聚集在一起. (2)Ti(C, N)固溶体的标准摩尔生成吉布斯自 由能随着 TiC 含量的增加呈现先降低后增加的趋 势,且 Ti(C,N)实际混合摩尔生成吉布斯自由能要 显著低于标准混合摩尔生成吉布斯自由能和理想混 合摩尔生成吉布斯自由能. 在不同温度条件下,TiC 和 TiN 在固溶体中存在的比例不同,高温时以析出 TiC 为主,低温时以析出 TiN 为主. (3)高炉炉缸含钛保护层中存在的 Ti(C, N)颗 粒是由 TiC 和 TiN 形成的固溶体,Ti(C, N)固溶体 的形成与高炉热力学状态条件直接相关,高炉炉缸 含钛保护层中,Ti(C, N) 固溶体中存在的物相为 TiC0郾 3N0郾 7 ,该固溶体在该高炉炉缸中的形成温度为 1423 益 . 参 考 文 献 [1] Jiao K X, Zhang J L, Liu Z J, et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int, 2016, 56(11): 1956 [2] Liu Z J, Zhang J L, Yang T J. Low carbon operation of super鄄 large blast furnaces in China. ISIJ Int, 2015, 55(6): 1146 [3] Jiao K X, Zhang J L, Liu Z J, et al. Properties and application of carbon composite brick for blast furnace hearth. J Min Metall Sect B鄄Metall, 2015, 51(2): 143 [4] Jiao K X, Zhang J L, Liu Z J, et al. Dissection investigation of Ti(C,N) behavior in blast furnace hearth during vanadium titano鄄 magnetite smelting. ISIJ Int, 2017, 57(1): 48 [5] Inada T, Kasai A, Nakano K, et al. Dissection investigation of blast furnace hearth鄄Kokura No. 2 blast furnace (2nd campaign). ISIJ Int, 2009, 49(4): 470 [6] Shinotake A, Nakamura H, Yadoumaru N, et al. Investigation of blast furnace hearth sidewall erosion by core sample analysis and consideration of campaign operation. ISIJ Int, 2003, 43(3): 321 [7] Takatani K, Inada T, Takata K. Mathematical model for transient erosion process of blast furnace hearth. ISIJ Int, 2001, 41(10): 1139 [8] Jiao K X, Zhang J L, Liu Z J, et al. Analysis of the phase of the solid iron layer in blast furnace hearth. Chin J Eng, 2017, 39 (6): 838 (焦克新, 张建良, 刘征建, 等. 高炉炉缸凝铁层物相分析. 工程科学学报, 2017, 39(6): 838) [9] Zhang J L, Jiao K X, Liu Z J, et al. Comprehensive regulation technology for hearth protective layer of blast furnace longevity. Iron Steel, 2017, 52(12): 1 (张建良, 焦克新, 刘征建, 等. 长寿高炉炉缸保护层综合调 控技术. 钢铁, 2017, 52(12): 1) [10] Li Y, Li Y Q, Fruehan R J. Formation of titanium carbonitride from hot metal. ISIJ Int, 2001, 41(12): 1417 [11] Li Y, Fruehan R J. Thermodynamics of TiCN and TiC in Fe鄄鄄 C sat melts. Metall Mater Trans B, 2001, 32(6): 1203 [12] Bai C G, Pei H N, Zhao S J, et al. An investigation of the rela鄄 tionship between the particle size of titanium carbonitride and the viscosity of blast furnace slag bearing high titania. Iron Steel Van Tit, 1995, 16(3): 6 (白晨光, 裴鹤年, 赵诗金, 等. 碳氮化钛粒度与熔渣粘度关 系的研究. 钢铁钒钛, 1995, 16(3): 6) [13] Zhen Y L, Zhang G H, Chou K C. Viscosity of CaO鄄鄄 MgO鄄鄄 Al2O3 鄄鄄 SiO2 鄄鄄TiO2 melts containing TiC particles. Metall Mater Trans B, 2015, 46(1): 155 [14] Zhen Y L, Zhang G H, Chou K C, et al. Influence of TiN on viscosity of CaO鄄鄄MgO鄄鄄Al2O3 鄄鄄SiO2 鄄鄄(TiN) suspension system. Can Metall Q, 2015, 54(3): 340 [15] Liu Y X, Zhang J L, Zhang G H, et al. Influence of Ti(C0郾 3N0郾 7 ) on viscosity of blast furnace slags. Ironmak Steelmak, 2017, 44 (8): 609 [16] Wang X Q. Blast Furnace Smelting Vanadium Titanium Magne鄄 tite. 1st. Beijing: Metallurgical Industry Press, 1994 (王喜庆. 钒钛磁铁矿高炉冶炼. 1 版. 北京: 冶金工业出版 社, 1994) [17] Song J C. Titanium Material Protection Technology. Beijing: Metallurgical Industry Press, 1994 (宋建成. 高炉含钛物料护炉技术. 北京:冶金工业出版社, 1994) [18] Wada H, Pehlke R D. Nitrogen solubility and nitride formation in austenitic Fe鄄鄄Ti alloys. Metall Trans B, 1985, 16(4): 815 [19] Ozturk B, Fruehan R J. Thermodynamics of inclusion formation in Fe鄄鄄Ti鄄鄄C鄄鄄N alloys. Metall Trans B, 1990, 21(5): 879 [20] Sumito M, Tsuchiya N, Okabe K, et al. Solubility of titanium and carbon in molten Fe鄄鄄 Ti alloys saturated with carbon. Trans Iron Steel Inst Jpn, 1981, 21(6): 414 [21] Jonsson S. Assessment of the Fe鄄鄄Ti鄄鄄C system calculation of the Fe鄄鄄 Ti鄄鄄C system and prediction of the solubility limit of Ti(C,N) in liquid Fe. Metall Mater Trans B, 1998, 29(2): 371 [22] Morizane Y, Ozturk B, Fruehan R J. Thermodynamics of TiOx in blast furnace type slags. Metall Mater Trans B, 1999, 30 (1): 29 [23] Jung I J, Kang S, Jhi S H, et al. A study of the formation of Ti(CN) solid solutions. Acta Mater, 1999, 47(11): 3241 [24] Jung I J, Kang S. A study of the characteristics of Ti(CN) solid solutions. J Mater Sci, 2000, 35(1): 87 ·197·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有