正在加载图片...
H Mei/Composites Science and Technology 68(2008)3285-3292 authors also gratefully acknowledge the program for Changjiang 110] Vagaggini E, Domergue JM, Evans AG. Relationships Scholars and Innovative Research Team in University(PCSirT) ips c eawrencomysoesits References nts and the constituent properties of ceramic matrix composites: tudy on unidirectional materials. J 995;78(10):2721-31 [2] Naslain R. Lamon J. Pailler R, Bourrat X, Guette A, Langlais F. Micro/ [13 Morscher GN. Stress-dependent matrix cracking in 2D woven SiC-fiber infiltrated Sic matrix composites. Comp Sci Technol [3] Mei H, Cheng LF, Zhang LT, Xu YD. Modeling the effects of thermal and [14] Camus G, Guillaumat L, Baste S Development of damage in a 2D woven C/Sic mechanical load cycling on a C/SiC composite in oxygen/ argon mixtures. composite under mechanical loading: I mechanical characterization. Comp Sci 3-72. rmal residual stresses in ceramic matrix composites [15] Wang M, Laird C Characterization of microstructure and tensile behavior of a model and finite element analysis. Acta Metall Mater Mater1996:44(4):1371-87 95:43(6):2241-53 [16 Cady C, Heredia properties of several In JL Ther <perimental results for model materials. Acta [17] Wang M, Laird C. Tension-tension fatigue of a cross-woven C/SiC composite Mater Sci Eng 1997: A230: 171-82. [7] Broda M, Pyzalla A, Reimers w. X-ray analysis of residual stresses in C/Sic [19] Hucthinson JW. Jensen H. Models of fiber de g and pull-out mposites Appl Composite Mater 1999: 6: 51-66. 8] Steen M. Tensile mastercurve of ceramic matrix composites: significance and [20] Wang yo. Zhang Lr. cheng LF. Mei h. mia jo. Characterization of tensile 0 ons for modeling. Mat1912024、 fabricated by chemical vapor infiltration. Mater Sci Eng A 2007. doi:10 10161 red and fibre-reinforced composites: Proceedings Research Workshop, Kiev, Ukraine: Netherlands: 2-6 Science and technology press, Teddington, UK, 1971. p 15-8.authors also gratefully acknowledge the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT). References [1] Naslain R. Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Comp Sci Technol 2004;64:155–7. [2] Naslain R, Lamon J, Pailler R, Bourrat X, Guette A, Langlais F. Micro/ minicomposites: a useful approach to the design and development of non￾oxide CMCs. Composites Part A 1999;30:537–47. [3] Mei H, Cheng LF, Zhang LT, Xu YD. Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures. Carbon 2007;45:2195–204. [4] Bobet JL, Lamon J. Thermal residual stresses in ceramic matrix composites-I: axisymmetrical model and finite element analysis. Acta Metall Mater 1995;43(6):2241–53. [5] Bobet JL, Naslain R, Guette A, Ji N, Lebrun JL. Thermal residual stresses in ceramic matrix composites-II: experimental results for model materials. Acta Metall Mater 1995;43(6):2255–68. [6] Bobet JL, Lamon J. Study of thermal residual in ceramic matrix composites. J Alloys Compounds 1997;259:260–4. [7] Broda M, Pyzalla A, Reimers W. X-ray analysis of residual stresses in C/SiC composites. Appl Composite Mater 1999;6:51–66. [8] Steen M. Tensile mastercurve of ceramic matrix composites: significance and implications for modeling. Mater Sci Eng 1998;A250:241–8. [9] Steen M. Effect of residual stresses on the mechanical response of continuous fibre reinforced ceramic matrix composites. In: Advanced multilayered and fibre-reinforced composites; Proceedings of the NATO Advanced Research Workshop, Kiev, Ukraine; Netherlands; 2–6 June 1997. p. 297–309. [10] Vagaggini E, Domergue JM, Evans AG. Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, theory. J Am Ceram Soc 1995;78(10):2709–20. [11] Domergue JM, Vagaggini E, Evans AG. Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: II, experimental study on unidirectional materials. J Am Ceram Soc 1995;78(10):2721–31. [12] Mei H, Cheng LF, Zhang LT, Luan XG, Zhang J. Behavior of two-dimensional C/ SiC composites subjected to thermal cycling in controlled environments. Carbon 2006;44:121–7. [13] Morscher GN. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Comp Sci Technol 2004;64:1311–9. [14] Camus G, Guillaumat L, Baste S. Development of damage in a 2D woven C/SiC composite under mechanical loading: I mechanical characterization. Comp Sci Technol 1996;56:1363–72. [15] Wang M, Laird C. Characterization of microstructure and tensile behavior of a cross-woven C-SiC composite. Acta Mater 1996;44(4):1371–87. [16] Cady C, Heredia FE, Evans AG. In-plane mechanical properties of several ceramic matrix composites. J Am Ceram Soc 1995;78(8):2065–78. [17] Wang M, Laird C. Tension–tension fatigue of a cross-woven C/SiC composite. Mater Sci Eng 1997;A230:171–82. [18] Mei H, Cheng LF. Thermal cycling response behavior of ceramic matrix composites under load and displacement constraints. Mater Sci Eng 2008;A486:235–40. [19] Hucthinson JW, Jensen H. Models of fiber debonding and pull-out in brittle composites with friction. Mech Mater 1990;9:139–63. [20] Wang YQ, Zhang LT, Cheng LF, Mei H, Ma JQ. Characterization of tensile behavior of a two dimensional woven carbon/silicon carbide composite fabricated by chemical vapor infiltration. Mater Sci Eng A 2007. doi:10.1016/ j.msea.2008.07.050. [21] Aveston J, Copper GA, Kelly A. Single and multiple fractures. In: The property of fiber composites Conference proceedings of National Physical Laboratories, IPC Science and technology press, Teddington, UK, 1971. p. 15–8. 3292 H. Mei / Composites Science and Technology 68 (2008) 3285–3292
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有