张杰等:循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 645. 参考文献 behavior.Rock Soil Mech,2018,39(Suppl 2):389 (王桂林,梁再勇,张亮,等.Z型裂隙对砂岩强度和破裂行为影 [1]Lajtai EZ,Carter BJ,Ayari M L.Criteria for brittle fracture in compression.Eng Fract Mech,1990.37(1):59 响机制研究.岩土力学,2018,39(增刊2):389) [13]Afolagboye L O,He J M,Wang S J.Experimental study on [2]Yang S Q,Jing H W,Wang S Y.Experimental investigation on the cracking behavior of moulded gypsum containing two non-parallel strength,deformability,failure behavior and acoustic emission overlapping flaws under uniaxial compression.Acta Mech Sin, locations of red sandstone under triaxial compression.Rock Mech 2017,33(2):394 Rock Eng,2012,45(4:583 [3]Cao P,Liu TY,PuCZ,et al.Crack propagation and coalescence [14]Bobet A,Einstein HH.Fracture coalescence in rock-type materials under uniaxial and biaxial compression.Int Rock Mech Min Sci, of brittle rock-like specimens with pre-existing cracks in 1998.35(7):863 compression.Eng Geol,2015,187:113 [15]Bagde M N,Petros V.Fatigue and dynamic energy behaviour of [4]Chen W Z,Li S C,Zhu W S,et al.Experimental and numerical rock subjected to cyclical loading.Int J Rock Mech Min Sci,2009. research on crack propagation in rock under compression.ChinJ 46(1):200 Rock Mech Eng,2003,22(1):18 [16]Chen Y Q,Watanabe K,Kusuda H,et al.Crack growth in (陈卫忠,李术才,朱维申,等.岩石裂纹扩展的实验与数值分析 Westerly granite during a cyclic loading test.Eng Geol,2011, 研究.岩石力学与工程学报,2003.22(1):18) 117(3-4):189 [5]Zhao H J,Dwayne T,Guo J,et al.Numerical study on fracture [17]Ghamgosar M,Erarslan N,Williams D J.Experimental propagation and interaction using continuous-discontinuous failure investigation of fracture process zone in rocks damaged under method.J Eng Geol,2019,27(5):933 cyclic loadings.Exp Mech,2017,57(1):97 (赵海军,Dwayne T,郭捷,等.基于连续-非连续方法的裂隙破 [18]Zhu Y B,Huang X,Guo J,et al.Experimental study of fatigue 坏与相互作用研究.工程地质学报,2019,27(5):933) characteristics of gypsum rock under cyclic loading.Chin J Rock [6]Song Y Q,Li M,Wang X,et al.Experimental test on marble Mech Eng,2017,36(4:940 containing two pre-existing cracks under loading and unloading (祝艳波,黄兴,郭杰,等.循环荷载作用下石膏质岩的疲劳特性 conditions based on high-speed photography.Chin Rock Mech 试验研究.岩石力学与工程学报,2017,36(4):940) Eng,2015,34(Suppl1):2679 [19]He MM,Chen Y S,Li N,et al.Deformation and energy (宋彦琦,李名,王晓,等.基于高速摄影的双预制裂纹大理岩加 characteristics of sandstone subjected to uniaxial eyclic loading 卸载试验.岩石力学与工程学报,2015,34(增刊1):2679) China Coal Soc,2015,40(8):1805 [7]Guo Q F,Wu X,Cai M F,et al.Experiment on the strength (何明明,陈蕴生,李宁,等.单轴循环荷载作用下砂岩变形特性 characteristics and failure modes of granite with pre-existing 与能量特征.煤炭学报,2015,40(8):1805) cracks.Chin J Eng,2019,41(1):43 [20]Ren S,Wang X S,Gao S X,et al.Experimental study on fatigue (郭奇峰,武旭,蔡美峰,等.预制裂隙花岗岩的强度特征与破坏 damage of sandstone based on NMR and acoustic emission.Trans 模式试验.工程科学学报,2019,41(1):43) Beijing Inst Technol,2019,39(8):792 [8]Guo Q F,Pan J L,Cai M F,et al.Investigating the effect of rock (任松,王小书,高思娴,等.基于NMR和声发射的砂岩疲劳损伤 bridge on the stability of locked section slopes by the direct shear 试验研究.北京理工大学学报,2019,39(8):792) test and acoustic emission technique.Sensors,2020,20(3):638 [21]Mahabadi O K,Randall N X,Zong Z,et al.A novel approach for [9]Tang L Z,Song Y L.Particle flow simulation of macro-and meso micro-scale characterization and modeling of geomaterials mechanical properties of uniaxially compressed rock-like incorporating actual material heterogeneity.Geoplnys Res Lett, specimens with non-coplanar overlapping flaws.Chin J Rock 2012,39(1):L01303 Mech Eng,.2019,38(11:2161 [22]Undul O,Amann F,Aysal N,et al.Micro-textural effects on crack (唐礼,忠,宋徉霖.含非共面重叠型微裂隙类岩石试样单轴受压 initiation and crack propagation of andesitic rocks.Eng Geol, 宏细观力学特性颗粒流模拟.岩石力学与工程学报,2019, 2015,193:267 38(11):2161) [23]Ghasemi S,Khamehchiyan M,Taheri A,et al.Crack evolution in [10]Martin C D,Chandler N A.The progressive fracture of Lac du damage stress thresholds in different minerals of granite rock. Bonnet granite.Int J Rock Mech Min Sci Geomech Abstr,1994 Rock Mech Rock Eng,2020,53(3):1163 31(6):643 [24]Xu J M,Huang D Y,Zhu H C.Relations between macro-and [11]Cai M,Kaiser P K,Tasaka Y,et al.Generalized crack initiation meso-scopic mechanical parameters of granite based on actual and crack damage stress thresholds of brittle rock masses near distributions of mesocompositions.ChinJRock Mech Eng.2016, underground excavations.Int J Rock Mech Min Sci,2004,41(5): 35(Suppl1):2635 833 (徐金明,黄大勇,朱洪昌.基于细观组分实际分布的花岗岩宏 [12]Wang G L,Liang Z Y,Zhang L,et al.Study of influence 细观参数关系.岩石力学与工程学报,2016,35(增刊1):2635) mechanism of Z-type fissure on sandstone strength and fracture [25]Deng S X,Zheng Y L,Feng L P,et al.Application of design of参 考 文 献 Lajtai E Z, Carter B J, Ayari M L. Criteria for brittle fracture in compression. Eng Fract Mech, 1990, 37(1): 59 [1] Yang S Q, Jing H W, Wang S Y. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng, 2012, 45(4): 583 [2] Cao P, Liu T Y, Pu C Z, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol, 2015, 187: 113 [3] Chen W Z, Li S C, Zhu W S, et al. Experimental and numerical research on crack propagation in rock under compression. Chin J Rock Mech Eng, 2003, 22(1): 18 (陈卫忠, 李术才, 朱维申, 等. 岩石裂纹扩展的实验与数值分析 研究. 岩石力学与工程学报, 2003, 22(1):18) [4] Zhao H J, Dwayne T, Guo J, et al. Numerical study on fracture propagation and interaction using continuous-discontinuous failure method. J Eng Geol, 2019, 27(5): 933 (赵海军, Dwayne T, 郭捷, 等. 基于连续-非连续方法的裂隙破 坏与相互作用研究. 工程地质学报, 2019, 27(5):933) [5] Song Y Q, Li M, Wang X, et al. Experimental test on marble containing two pre-existing cracks under loading and unloading conditions based on high-speed photography. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2679 (宋彦琦, 李名, 王晓, 等. 基于高速摄影的双预制裂纹大理岩加 卸载试验. 岩石力学与工程学报, 2015, 34(增刊 1):2679) [6] Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43 (郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏 模式试验. 工程科学学报, 2019, 41(1):43) [7] Guo Q F, Pan J L, Cai M F, et al. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique. Sensors, 2020, 20(3): 638 [8] Tang L Z, Song Y L. Particle flow simulation of macro- and mesomechanical properties of uniaxially compressed rock-like specimens with non-coplanar overlapping flaws. Chin J Rock Mech Eng, 2019, 38(11): 2161 (唐礼忠, 宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压 宏细观力学特性颗粒流模拟. 岩石力学与工程学报, 2019, 38(11):2161) [9] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643 [10] Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci, 2004, 41(5): 833 [11] Wang G L, Liang Z Y, Zhang L, et al. Study of influence mechanism of Z-type fissure on sandstone strength and fracture [12] behavior. Rock Soil Mech, 2018, 39(Suppl 2): 389 (王桂林, 梁再勇, 张亮, 等. Z型裂隙对砂岩强度和破裂行为影 响机制研究. 岩土力学, 2018, 39(增刊 2):389) Afolagboye L O, He J M, Wang S J. Experimental study on cracking behavior of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression. Acta Mech Sin, 2017, 33(2): 394 [13] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 [14] Bagde M N, Petroš V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. Int J Rock Mech Min Sci, 2009, 46(1): 200 [15] Chen Y Q, Watanabe K, Kusuda H, et al. Crack growth in Westerly granite during a cyclic loading test. Eng Geol, 2011, 117(3-4): 189 [16] Ghamgosar M, Erarslan N, Williams D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings. Exp Mech, 2017, 57(1): 97 [17] Zhu Y B, Huang X, Guo J, et al. Experimental study of fatigue characteristics of gypsum rock under cyclic loading. Chin J Rock Mech Eng, 2017, 36(4): 940 (祝艳波, 黄兴, 郭杰, 等. 循环荷载作用下石膏质岩的疲劳特性 试验研究. 岩石力学与工程学报, 2017, 36(4):940) [18] He M M, Chen Y S, Li N, et al. Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading. J China Coal Soc, 2015, 40(8): 1805 (何明明, 陈蕴生, 李宁, 等. 单轴循环荷载作用下砂岩变形特性 与能量特征. 煤炭学报, 2015, 40(8):1805) [19] Ren S, Wang X S, Gao S X, et al. Experimental study on fatigue damage of sandstone based on NMR and acoustic emission. Trans Beijing Inst Technol, 2019, 39(8): 792 (任松, 王小书, 高思娴, 等. 基于NMR和声发射的砂岩疲劳损伤 试验研究. 北京理工大学学报, 2019, 39(8):792) [20] Mahabadi O K, Randall N X, Zong Z, et al. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophys Res Lett, 2012, 39(1): L01303 [21] Ündül Ö, Amann F, Aysal N, et al. Micro-textural effects on crack initiation and crack propagation of andesitic rocks. Eng Geol, 2015, 193: 267 [22] Ghasemi S, Khamehchiyan M, Taheri A, et al. Crack evolution in damage stress thresholds in different minerals of granite rock. Rock Mech Rock Eng, 2020, 53(3): 1163 [23] Xu J M, Huang D Y, Zhu H C. Relations between macro-and meso-scopic mechanical parameters of granite based on actual distributions of mesocompositions. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2635 (徐金明, 黄大勇, 朱洪昌. 基于细观组分实际分布的花岗岩宏 细观参数关系. 岩石力学与工程学报, 2016, 35(增刊 1):2635) [24] [25] Deng S X, Zheng Y L, Feng L P, et al. Application of design of 张 杰等: 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 · 645 ·