正在加载图片...
尹升华等:矿石颗粒级配对堆浸体系三维孔隙结构的影响 979· 间具有更好的连通性.孔喉形状因子受矿石粒径分布 [15]Ye Y J,Ding D X,Li G Y,et al.Regularities for liquid saturated 影响较小,浸柱A(0~10mm)和浸柱B(5~10mm) seepage in uranium ore heap for heap leaching.Rock Soil Mech, 2013.34(8):2243 中各形状因子数值区间上孔喉数量的分布频率具 (叶勇军,丁德馨,李广悦,等.堆浸铀矿堆液体饱和渗流规律的 有良好的一致性 研究.岩土力学,2013,34(8):2243) [16]Dhawan N,Safarzadeh M S,Miller J D,et al.Recent advances in 参考文献 the application of X-ray computed tomography in the analysis of [1]Ilankoon I MS K,Tang Y,Ghorbani Y,et al.The current state and heap leaching systems.Miner Eng,2012,35:75 future directions of percolation leaching in the Chinese mining [17]Ye J B,Zhang J F,Zou W L.Influences of grain shape on pore industry:Challenges and opportunities.Miner Eng,2018,125:206 characteristics of filled breakstone aggregate.Rock Soil Mech, [2]Yin S H,Wang L M.Kabwe E,et al.Copper bioleaching in China: 2018.39(12):4457 review and prospect.Minerals,2018,8(2):32 (叶加兵,张家发,邹维列.颗粒形状对碎石料孔隙特性彩响研 [3]Petersen J.Heap leaching as a key technology for recovery of 究.岩土力学,2018,39(12):4457) values from low-grade ores-a brief overview.Hydrometallurgy, [18]Nosrati A,Skinner W,Robinson D J,et al.Microstructure analysis 2016,165:206 of Ni laterite agglomerates for enhanced heap leaching.Powder [4]Yin S H,Wang L M,Wu A X,et al.Progress of research in copper Technol,2012,232:106 bioleaching technology in China.Chin J Eng,2019,41(2):143 [19]Cnudde V,Boone M N.High-resolution X-ray computed (尹升华:王雷鸣:吴爱样,等.我国铜矿微生物浸出技术的研究 tomography in geosciences:a review of the current technology and 进展.工程科学学报,2019,41(2):143) applications.Earth-Sci Rev,2013,123:1 [5]Ghorbani Y,Franzidis J P,Petersen J.Heap leaching technology- [20]Hoummady E,Golfier F,Cathelineau M,et al.A multi-analytical current state,innovations,and future directions:a review.Miner approach to the study of uranium-ore agglomerate structure and Process Extract Metall Rev,2016,37(2):73 porosity during heap leaching.Hydrometallurgy,2017,171:33 [6]Miao XX,Wu A X,Yang B H.Recent advances in heap leaching [21]Lin Q,Neethling S J,Courtois L,et al.Multi-scale quantification research:Characterisation and modelling.Chin Nonferrous Met, of leaching performance using X-ray tomography 2018,28(11:2327 Hydrometallurgy,2016,164:265 (缪秀秀,吴爱样,杨保华.堆浸水力学研究前沿:结构表征与模 [22]Wu A X,Yin S H.Li J F.Influential factors of permeability rule of 型仿真.中国有色金属学报,2018,28(11):2327) leaching solution in ion-absorbed rare earth deposits with in situ [7]Bouffard S C,West-Sells P G.Hydrodynamic behavior of heap leaching.J Cent South Univ Sci Technol,2005,36(3):506 leach piles:Influence of testing scale and material properties. (吴爱祥,尹升华,李建锋.离子型稀土矿原地溶浸溶浸液渗流规 Hydrometallurgy,2009,98(1-2):136 律的影响因素.中南大学学报:自然科学版,2005,36(3):506) [8] Wu A X,Wang S Y,Yang B H.Effect of particle structure on [23]Liu Y F.Zheng D S,Yang B.et al.Microscopic simulation of permeability of leaching dump.Min Res Dev,2011(5):22 influence of particle size and gradation on permeability coefficient (吴爱祥,王少勇,杨保华.堆浸散体颗粒结构对溶浸液渗流规 of soil.Rock Soil Mech,2019,40(1):403 律的影响.矿业研究与开发,2011(5):22) (刘一飞,郑东生,杨兵,等.粒径及级配特性对土体渗透系数影 [9] Rong L W,Dong K J,Yu A B.Lattice-Boltzmann simulation of 响的细观模拟.岩土力学,2019,40(1):403) fluid flow through packed beds of spheres:effect of particle size [24]Yang B H,Wu A X,Miao XX.3D micropore structure evolution distribution.Chem Eng Sci,2014,116:508 of ore particles based on image processing.Chin J Eng,2016, [10]Ilankoon I M S K,Neethling S J.Hysteresis in unsaturated flow in 38(3):328 packed beds and heaps.Miner Eng,2012,35:1 (杨保华,吴爱样,缨秀秀.基于图像处理的矿石颗粒三维微观 [11]Ding D X,Li G Y,Xu W P,et al.Regularities for saturated water 孔隙结构演化.工程科学学报,2016,38(3):328) seepage in loose fragmented medium.Chin J Geotech Eng,2010. [25]Zhang S,Liu W Y,Granata G.Effects of grain size gradation on 32(2):180 the porosity of packed heap leach beds.Hydrometallurgy,2018. (丁德馨,李广悦,徐文平,等.松散破碎介质中液体饱和渗流规 179:238 律研究.岩土工程学报,2010,32(2):180) [26]Raeini A Q,Bijeljic B,Blunt M J.Generalized network modeling: [12]Ilankoon I M S K,Neethling S J.Liquid spread mechanisms in Network extraction as a coarse-scale discretization of the void packed beds and heaps.The separation of length and time scales space of porous media.Phys Rev E,2017,96(1):013312 due to particle porosity.Miner Eng,2016,86:130 [27]Jiao HZ,Wang S F,Wu A X,et al.Pore network model of tailings [13]Poisson J,Chouteau M,Aubertin M,et al.Geophysical thickener bed and water drainage channel evolution under the experiments to image the shallow intemal structure and the shearing effect.Chin J Eng,2019,41(8):987 moisture distribution of a mine waste rock pile.J Appl Geophys, (焦华枯,王树飞,吴爱祥,等.剪切浓密床层孔隙网络模型与导 2009,67(2):179 水通道演化.工程科学学报,2019,41(8):987) [14]Yin S H,Wang L M,Chen X,et al.Effect of ore size and heap [28]Bultreys T,Lin Q Y,Gao Y,et al.Validation of model predictions porosity on capillary process inside leaching heap.Trans of pore-scale fluid distributions during two-phase flow.Phys Rev Nonferrous Met Soc China,2016.26(3):835 E,2018.97(5):053104间具有更好的连通性. 孔喉形状因子受矿石粒径分布 影响较小,浸柱 A(0~10 mm)和浸柱 B(5~10 mm) 中各形状因子数值区间上孔喉数量的分布频率具 有良好的一致性. 参    考    文    献 Ilankoon I M S K, Tang Y, Ghorbani Y, et al. The current state and future  directions  of  percolation  leaching  in  the  Chinese  mining industry: Challenges and opportunities. Miner Eng, 2018, 125: 206 [1] Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China: review and prospect. Minerals, 2018, 8(2): 32 [2] Petersen  J.  Heap  leaching  as  a  key  technology  for  recovery  of values  from  low-grade  ores –a  brief  overview. Hydrometallurgy, 2016, 165: 206 [3] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143 (尹升华;王雷鸣;吴爱祥, 等. 我国铜矿微生物浸出技术的研究 进展. 工程科学学报, 2019, 41(2):143) [4] Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology— current  state,  innovations,  and  future  directions:  a  review. Miner Process Extract Metall Rev, 2016, 37(2): 73 [5] Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. Chin J Nonferrous Met, 2018, 28(11): 2327 (缪秀秀, 吴爱祥, 杨保华. 堆浸水力学研究前沿: 结构表征与模 型仿真. 中国有色金属学报, 2018, 28(11):2327) [6] Bouffard  S  C,  West-Sells  P  G.  Hydrodynamic  behavior  of  heap leach  piles:  Influence  of  testing  scale  and  material  properties. Hydrometallurgy, 2009, 98(1-2): 136 [7] Wu  A  X,  Wang  S  Y,  Yang  B  H.  Effect  of  particle  structure  on permeability of leaching dump. Min Res Dev, 2011(5): 22 (吴爱祥, 王少勇, 杨保华. 堆浸散体颗粒结构对溶浸液渗流规 律的影响. 矿业研究与开发, 2011(5):22) [8] Rong L W, Dong K J, Yu A B. Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. Chem Eng Sci, 2014, 116: 508 [9] Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. Miner Eng, 2012, 35: 1 [10] Ding D X, Li G Y, Xu W P, et al. Regularities for saturated water seepage in loose fragmented medium. Chin J Geotech Eng, 2010, 32(2): 180 (丁德馨, 李广悦, 徐文平, 等. 松散破碎介质中液体饱和渗流规 律研究. 岩土工程学报, 2010, 32(2):180) [11] Ilankoon  I  M  S  K,  Neethling  S  J.  Liquid  spread  mechanisms  in packed beds and heaps. The separation of length and time scales due to particle porosity. Miner Eng, 2016, 86: 130 [12] Poisson  J,  Chouteau  M,  Aubertin  M,  et  al.  Geophysical experiments  to  image  the  shallow  internal  structure  and  the moisture distribution of a mine waste rock pile. J Appl Geophys, 2009, 67(2): 179 [13] Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity  on  capillary  process  inside  leaching  heap. Trans Nonferrous Met Soc China, 2016, 26(3): 835 [14] Ye Y J, Ding D X, Li G Y, et al. Regularities for liquid saturated seepage  in  uranium  ore  heap  for  heap  leaching. Rock Soil Mech, 2013, 34(8): 2243 (叶勇军, 丁德馨, 李广悦, 等. 堆浸铀矿堆液体饱和渗流规律的 研究. 岩土力学, 2013, 34(8):2243) [15] Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Miner Eng, 2012, 35: 75 [16] Ye J B, Zhang J F, Zou W L. Influences of grain shape on pore characteristics  of  filled  breakstone  aggregate. Rock Soil Mech, 2018, 39(12): 4457 (叶加兵, 张家发, 邹维列. 颗粒形状对碎石料孔隙特性影响研 究. 岩土力学, 2018, 39(12):4457) [17] Nosrati A, Skinner W, Robinson D J, et al. Microstructure analysis of  Ni  laterite  agglomerates  for  enhanced  heap  leaching. Powder Technol, 2012, 232: 106 [18] Cnudde  V,  Boone  M  N.  High-resolution  X-ray  computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev, 2013, 123: 1 [19] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach  to  the  study  of  uranium-ore  agglomerate  structure  and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 [20] Lin Q, Neethling S J, Courtois L, et al. Multi-scale quantification of  leaching  performance  using  X-ray  tomography. Hydrometallurgy, 2016, 164: 265 [21] Wu A X, Yin S H, Li J F. Influential factors of permeability rule of leaching  solution  in  ion-absorbed  rare  earth  deposits  with  in  situ leaching. J Cent South Univ Sci Technol, 2005, 36(3): 506 (吴爱祥, 尹升华, 李建锋. 离子型稀土矿原地溶浸溶浸液渗流规 律的影响因素. 中南大学学报: 自然科学版, 2005, 36(3):506) [22] Liu  Y  F,  Zheng  D  S,  Yang  B,  et  al.  Microscopic  simulation  of influence of particle size and gradation on permeability coefficient of soil. Rock Soil Mech, 2019, 40(1): 403 (刘一飞, 郑东生, 杨兵, 等. 粒径及级配特性对土体渗透系数影 响的细观模拟. 岩土力学, 2019, 40(1):403) [23] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of  ore  particles  based  on  image  processing. Chin J Eng,  2016, 38(3): 328 (杨保华, 吴爱祥, 缪秀秀. 基于图像处理的矿石颗粒三维微观 孔隙结构演化. 工程科学学报, 2016, 38(3):328) [24] Zhang S, Liu W Y, Granata G. Effects of grain size gradation on the  porosity  of  packed  heap  leach  beds. Hydrometallurgy,  2018, 179: 238 [25] Raeini A Q, Bijeljic B, Blunt M J. Generalized network modeling: Network  extraction  as  a  coarse-scale  discretization  of  the  void space of porous media. Phys Rev E, 2017, 96(1): 013312 [26] Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener  bed  and  water  drainage  channel  evolution  under  the shearing effect. Chin J Eng, 2019, 41(8): 987 (焦华喆, 王树飞, 吴爱祥, 等. 剪切浓密床层孔隙网络模型与导 水通道演化. 工程科学学报, 2019, 41(8):987) [27] Bultreys T, Lin Q Y, Gao Y, et al. Validation of model predictions of pore-scale fluid distributions during two-phase flow. Phys Rev E, 2018, 97(5): 053104 [28] 尹升华等: 矿石颗粒级配对堆浸体系三维孔隙结构的影响 · 979 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有