正在加载图片...
邱婷婷等:粉末冶金铝合金烧结致密化过程 ·1081· 关:一方面,由于压制后的生坯相对密度高,孔洞残 Cu-Mg powder metallurgy alloy.Mater Sci Eng A,2013,559 留N2少,因此AN不能大量生成.另一方面,铝合 (1):902 金液相润湿和填充孔洞的速率远高于AN的生长 [4]Lall C,Heath W.P/M aluminum structural parts-Manufacturing and metallurgical fundamentals.Int J Pouder Metall,2000,36 速率,因此AN未能生长.A一Cu液相在A表面的 (6):45 润湿属于非反应性润湿体系,对于大尺寸孔洞,润湿 [5]Gutin S S,Panov AA,Khlopin M I.Effect of oxide films in the 体系的驱动力为表面张力,润湿液滴基圆半径·和 sintering of aluminum powders.Sou Powder Metall Met Ceram, 扩散时间t遵循函数P~t,n的取值范围为5~10,毫 1972,11(4):280 米级的液滴达到润湿平衡所需时间仅为101s四 6] Chiavazza V,Pijolat M,Lalauze R.Evolution of alloying elements during outgassing in an aluminium zinc magnesium alloy made by 对于颗粒边界之间较细小的缝隙,润湿体系的驱动 powder metallurgy.J Mater Sci,1988,23(8):2960 力为毛细管力,润湿距离x与时间1大致遵循函数 [7]Lumley R N,Sercombe T B,Schaffer G M.Surface oxide and the x2~,与前者相比,在毛细管力作用下液相可更快 role of magnesium during the sintering of aluminum.Metall Mater 润湿基体0.因此,在毛细管力和表面张力的作用 Trans A,1999,30(2):457 8) Kondoh K,Kimura A,Watanabe R.Effect of Mg on sintering 下,ACu液相能迅速润湿A1颗粒表面.而研究表 phenomenon of aluminium alloy powder particle.Pouder Metall, 明,A1-2%Mg-一1%Sn混合粉末在540℃,N2气氛烧 2001,44(2):161 结18h后,氮化层厚度仅为5mB,其氮化速率远 9] MacAskill I A,Hexemer Jr R L,Donaldson I W,et al.Effects of 低于体系润湿速率。因此在氮化层未形成时,液相 magnesium,tin and nitrogen on the sintering response of aluminum powder.J Mater Process Technol,2010,210(15):2252 己润湿A颗粒表面.一旦液相覆盖到整个颗粒表 [10]Schaffer G B,Sercombe T B,Lumley R N.Liquid phase sinte- 面,氮化过程很难继续进行.此外,本实验S元 ring of aluminium alloys.Mater Chem Phys,2001,67(13):85 素的添加也将进一步抑制AN的生成速率m.因 [11]Yan M,Yu P,Schaffer G B,et al.Secondary phases and inter- 此在本体系中未发现AN的存在. faces in a nitrogen-atmosphere sintered Al alloy:transmission e- lectron microscopy evidence for the formation of AlN during liquid 3结论 phase sintering.Acta Mater,2010,58(17)5667 02] Sercombe T B,Schaffer G B.On the role of magnesium and ni- (1)Al一MgSi-Cu系铝合金的烧结过程主要经 trogen in the infiltration of aluminium by aluminium for rapid pro- 历3个阶段:在烧结初始阶段,坯体内会首先形成 totyping applications.Acta Mater,2004,52(10):3019 Al-Mg合金液相,Mg原子分别扩散至铝粉或Al-Si [13]Dunnett K S,Mueller R M,Bishop D P.Development of Al-Ni- 粉末中,破除氧化膜,形成A-Mg0等化合物:在快 Mg-(Cu)aluminum P/M alloys.J Mater Process Technol, 2008,198(13):31 速致密化阶段,A-C山共晶液相在毛细管力作用下 [14]Schaffer G B,Huo S H,Drennan J,et al.The effect of trace el- 填充颗粒间缝隙或孔洞,坯体相对密度迅速增加;在 ements on the sintering of an Al-Zn-Mg-Cu alloy.Acta Mater, 近全致密化阶段,随体系润湿性的提高以及晶粒的 2001,49(14):2671 长大,液相持续填充大尺寸孔洞,使得坯体实现近全 015]Schaffer G B,Yao J Y,Bonner S J,et al.The effect of tin and 致密. nitrogen on liquid phase sintering of Al-Cu-Mg-Si alloys.Acta Maer,2008,56(11):2615 (2)在烧结过程中,铝合金液相润湿和填充孔 6] Schaffer C B,Hall B J.The influence of the atmosphere on the 洞的主要驱动力为表面张力和毛细管力,其润湿速 sintering of aluminum.Metall Mater Trans A,2002,33 (10): 率远高于AN的生长速率,因此本实验中未发现 3279 AN的生成. [17]Schaffer G B,Hall J B,Bonner S J,et al.The effect of the at- (3)在Al颗粒边界处,除MgA山0,氧化物外,还 mosphere and the role of pore filling on the sintering of alumin- 存在着MgAlCuO复杂氧化物,因此氧化膜的破除机 ium.Acta Mater,2006,54(1):131 [18]Yurchenko A G,Shcherban N I,Pugina L I.Elastic aftereffect 制可能与合金成分相关,可生成多种界面产物. of iron-graphite compacts in cold pressing.Sou Pouder Metall Met Ceram,1970,9(5):367 参考文献 [19]Crossin E,Yao J Y,Schaffer G B.Swelling during liquid phase [Qian M,Schaffer G B.Sintering of aluminium and its alloys.Sin- sintering of Al-Mg-Si-Cu alloys.Powder Metall,2007,50(4): ter Ady Mater,2010,60(3547):291 354 2]Daver E M,Trombino C J.State of the North American PM indus- [20]Scholz H,Greil P.Nitridation reactions of molten Al-(Mg,Si) try-2006.Int J Powder Metall,2006,42(4)35 alloys.J Mater Sci,1991,26(3):669 B]Boland C D.Hexemer R L.Industrial processing of a novel Al- [21]Hall B J,Schaffer G B,Ning Z,et al.Al/AIN layered compos-邱婷婷等: 粉末冶金铝合金烧结致密化过程 关: 一方面,由于压制后的生坯相对密度高,孔洞残 留 N2少,因此 AlN 不能大量生成. 另一方面,铝合 金液相润湿和填充孔洞的速率远高于 AlN 的生长 速率,因此 AlN 未能生长. Al--Cu 液相在 Al 表面的 润湿属于非反应性润湿体系,对于大尺寸孔洞,润湿 体系的驱动力为表面张力,润湿液滴基圆半径 r 和 扩散时间 t 遵循函数 r n ~ t,n 的取值范围为 5 ~ 10,毫 米级的液滴达到润湿平衡所需时间仅为 10 - 1 s [27--29]. 对于颗粒边界之间较细小的缝隙,润湿体系的驱动 力为毛细管力,润湿距离 x 与时间 t 大致遵循函数 x 2 ~ t,与前者相比,在毛细管力作用下液相可更快 润湿基体[30]. 因此,在毛细管力和表面张力的作用 下,Al--Cu 液相能迅速润湿 Al 颗粒表面. 而研究表 明,Al--2% Mg--1% Sn 混合粉末在 540 ℃,N2气氛烧 结 18 h 后,氮化层厚度仅为 5 μm[31],其氮化速率远 低于体系润湿速率. 因此在氮化层未形成时,液相 已润湿 Al 颗粒表面. 一旦液相覆盖到整个颗粒表 面,氮化过程很难继续进行[9]. 此外,本实验 Sn 元 素的添加也将进一步抑制 AlN 的生成速率[27]. 因 此在本体系中未发现 AlN 的存在. 3 结论 ( 1) Al--Mg--Si--Cu 系铝合金的烧结过程主要经 历 3 个阶段: 在烧结初始阶段,坯体内会首先形成 Al--Mg 合金液相,Mg 原子分别扩散至铝粉或 Al--Si 粉末中,破除氧化膜,形成 Al--Mg--O 等化合物; 在快 速致密化阶段,Al--Cu 共晶液相在毛细管力作用下 填充颗粒间缝隙或孔洞,坯体相对密度迅速增加; 在 近全致密化阶段,随体系润湿性的提高以及晶粒的 长大,液相持续填充大尺寸孔洞,使得坯体实现近全 致密. ( 2) 在烧结过程中,铝合金液相润湿和填充孔 洞的主要驱动力为表面张力和毛细管力,其润湿速 率远高于 AlN 的生长速率,因此本实验中未发现 AlN 的生成. ( 3) 在 Al 颗粒边界处,除 MgAl2O4氧化物外,还 存在着 MgAlCuO 复杂氧化物,因此氧化膜的破除机 制可能与合金成分相关,可生成多种界面产物. 参 考 文 献 [1] Qian M,Schaffer G B. Sintering of aluminium and its alloys. Sin￾ter Adv Mater,2010,60( 3547) : 291 [2] Daver E M,Trombino C J. State of the North American PM indus￾try--2006. Int J Powder Metall,2006,42( 4) : 35 [3] Boland C D,Hexemer R L. Industrial processing of a novel Al-- Cu--Mg powder metallurgy alloy. Mater Sci Eng A,2013,559 ( 1) : 902 [4] Lall C,Heath W. P /M aluminum structural parts-Manufacturing and metallurgical fundamentals. Int J Powder Metall,2000,36 ( 6) : 45 [5] Gutin S S,Panov A A,Khlopin M I. Effect of oxide films in the sintering of aluminum powders. Sov Powder Metall Met Ceram, 1972,11( 4) : 280 [6] Chiavazza V,Pijolat M,Lalauze R. Evolution of alloying elements during outgassing in an aluminium zinc magnesium alloy made by powder metallurgy. J Mater Sci,1988,23( 8) : 2960 [7] Lumley R N,Sercombe T B,Schaffer G M. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A,1999,30( 2) : 457 [8] Kondoh K,Kimura A,Watanabe R. Effect of Mg on sintering phenomenon of aluminium alloy powder particle. Powder Metall, 2001,44( 2) : 161 [9] MacAskill I A,Hexemer Jr R L,Donaldson I W,et al. Effects of magnesium,tin and nitrogen on the sintering response of aluminum powder. J Mater Process Technol,2010,210( 15) : 2252 [10] Schaffer G B,Sercombe T B,Lumley R N. Liquid phase sinte￾ring of aluminium alloys. Mater Chem Phys,2001,67( 1-3) : 85 [11] Yan M,Yu P,Schaffer G B,et al. Secondary phases and inter￾faces in a nitrogen-atmosphere sintered Al alloy: transmission e￾lectron microscopy evidence for the formation of AlN during liquid phase sintering. Acta Mater,2010,58( 17) : 5667 [12] Sercombe T B,Schaffer G B. On the role of magnesium and ni￾trogen in the infiltration of aluminium by aluminium for rapid pro￾totyping applications. Acta Mater,2004,52( 10) : 3019 [13] Dunnett K S,Mueller R M,Bishop D P. Development of Al--Ni-- Mg--( Cu ) aluminum P /M alloys. J Mater Process Technol, 2008,198( 1-3) : 31 [14] Schaffer G B,Huo S H,Drennan J,et al. The effect of trace el￾ements on the sintering of an Al--Zn--Mg--Cu alloy. Acta Mater, 2001,49( 14) : 2671 [15] Schaffer G B,Yao J Y,Bonner S J,et al. The effect of tin and nitrogen on liquid phase sintering of Al--Cu--Mg--Si alloys. Acta Mater,2008,56( 11) : 2615 [16] Schaffer G B,Hall B J. The influence of the atmosphere on the sintering of aluminum. Metall Mater Trans A,2002,33 ( 10) : 3279 [17] Schaffer G B,Hall J B,Bonner S J,et al. The effect of the at￾mosphere and the role of pore filling on the sintering of alumin￾ium. Acta Mater,2006,54( 1) : 131 [18] Yurchenko A G,Shcherban N I,Pugina L I. Elastic aftereffect of iron-graphite compacts in cold pressing. Sov Powder Metall Met Ceram,1970,9( 5) : 367 [19] Crossin E,Yao J Y,Schaffer G B. Swelling during liquid phase sintering of Al--Mg--Si--Cu alloys. Powder Metall,2007,50( 4) : 354 [20] Scholz H,Greil P. Nitridation reactions of molten Al--( Mg,Si) alloys. J Mater Sci,1991,26( 3) : 669 [21] Hall B J,Schaffer G B,Ning Z,et al. Al /AlN layered compos- · 1801 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有