正在加载图片...
0.35 0.88 (c) (d 0.30 0.86 0.25 0.84 0.20 0.82 0.15 0.80 0.10 0.78 Section I Section 2 Section 1 Section 2 0.05 Section3 Section 4 0.76 Section 3 Section4 0 Section 5 -Average value Section 5 Average value 0.00 0.74 0 1 2 3 4 5 6 2 3 6 Scanning stage Scanning stage 图13S3煤样的GLCM统计特征曲线.(a)对比度;(b)能量;(c)相关性,(d同质性 Fig.13 The curves of GLCM statistical characteristics of S3 coal sample:(a)contrast;(b)energy;(c)correlation;(d)homogeneity 5结论 u p o n tthrea n s p ort p r o p e r ties o f c o al:a l a b or ator y stu d k. Is o th e r m s d ist f i.B9s89 本文利用显微工业CT扫描技术,研究了受载含 78(11上1333-1344. 瓦斯煤样裂隙网络的动态演化特征。采用图像处理 [4]Wang D,Lv R,Wei J,et ental study of seepage properties 技术、三维重建技术和灰度共生矩阵(GLCM)理论 of gas-saturat nder different loading conditions 对不同加载阶段的裂隙的演化过程进行了分析,得 Science Engineering, (3:799-808. 到了以下主要结论: [5]Wang D,Lv F WeiJ,et al.An experimental study of the anisotropic (1)瓦斯压力的存在弱化了受载含瓦斯煤的力 pe of coal containing gas [J].Journal of Natu 学性质,加速了裂隙扩展。当瓦斯压力由0MPa升至 d Engineering,2018,53(5):67-73. 0.5MPa再至1.5MPa时,受载含瓦斯煤的三轴抗压强 Liu D,Cai Y,et al.Multi-scale fractal characteriz 度降低17.17和37.71%弹性模量降低20.766和 subbituminous and high-volatile bituminous 32.38%,裂隙体积增加117.67%和350.94%,裂隙密 r c u r y i n t r u s i o n p o r o s i m e 度增幅为168.15%和347.79%。 Science and Engineering,2017,44:338-350. (2)在三轴应力作用下,受载含瓦斯煤的裂隙 [7]L Hio,Y Sawa S M himada f.t echanism 先闭合后扩展,并最终形成复杂的贯通裂隙网络: coals aniis role on methane retblvEuel200382(10)t271 受载含瓦斯煤的三维裂隙体积和裂隙密度均表现出 1279 先减小后增大的发展规律,总体上里现出山裂隙压密 8 Z h a o J,Xu H,Tan g D,et al.C oa l se a m p o r o s 闭合、新裂隙萌生扩展和主裂隙加速扩展贯通3个变 heter oge neity o f m a c ro l i th o t y p es in t he H an c h 化阶段。 margin,Ordos Basin,China[J].International Journal of Coal Geology, (3)灰度共生矩阵统许冷法是分析受载含 2016,159:18-29. 瓦斯煤裂隙动态扩展和演化的有效手段。灰度共生 [9 Q i L,T a n g X,W a n g z,et a I. 矩阵各统计特征值的变化能有效描述受载含瓦斯煤 differentt opes ff al g orom d oal s nd I as utburst 的裂隙扩展和演过程。 三轴应力条件下,对比度 t e m p e r a t u r e n i t r og e n a d s or p t i o n a pp r o a ch J 先减小后单调递增能量和同质性的先增大后单调 of Mining Science and Technology,2017,27(2):371-377. 递减,与裂隙的动态演化趋势一致:相关性呈现出 [10]Ni X,Chen W,Li Z,et al.Reconstruction of different scales of pore 单调递减趋势。 fractures network of coal reservoir and its permeability prediction with 考文献: Monte Carlo method[J].International Journal of Mining Science Technology,2017,27(4:693-699. [1]Hou Z,Xie H,Zhou Het al Unconventional gas resources in China[J]. [11]Giffin S,Littke R,Klaver J,et al.Application of BIB-SEM technology Environmental Earth Sciences,2015,73(10):5785-5789. to characterize macropore morphology in coal[J].International Journal [2]Li S,Tang D,Pan Z,et al.Evaluation of coalbed methane potential of of Coal Geology,2013,114:85-95. different reservoirs in western Guizhou and eastern Yunnan,China[J]. [12 Zhao Y,Sun Y,Liu S,et al.Pore structure characterization of coal by Fuel,2015,139:257-267. NMR cryoporometry[J].Fuel,2017,190:359-369. [3]Clarkson CR,Bustin RM.The effect of pore structure and gas pressure [13]S Cuif SZ are a N,hang d I I.p anopore ha0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 1 2 3 4 5 6 Correlation Scanning stage (c) Section 1 Section 2 Section 3 Section 4 Section 5 Average value 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0 1 2 3 4 5 6 Homogeneity Scanning stage (d) Section 1 Section 2 Section 3 Section 4 Section 5 Average value 图 13 S3 煤样的 GLCM 统计特征曲线. (a) 对比度; (b) 能量; (c) 相关性; (d) 同质性 Fig.13 The curves of GLCM statistical characteristics of S3 coal sample: (a) contrast; (b) energy; (c) correlation; (d) homogeneity 5 结 论 本文利用显微工业CT扫描技术,研究了受载含 瓦斯煤样裂隙网络的动态演化特征。采用图像处理 技术、三维重建技术和灰度共生矩阵(GLCM)理论 对不同加载阶段的裂隙的演化过程进行了分析,得 到了以下主要结论: (1)瓦斯压力的存在弱化了受载含瓦斯煤的力 学性质,加速了裂隙扩展。当瓦斯压力由0 MPa升至 0.5 MPa再至1.5 MPa时,受载含瓦斯煤的三轴抗压强 度降低17.17%和37.71%,弹性模量降低20.76%和 32.38%,裂隙体积增加117.67%和350.94%,裂隙密 度增幅为168.15%和347.79%。 (2)在三轴应力作用下,受载含瓦斯煤的裂隙 先闭合后扩展,并最终形成复杂的贯通裂隙网络; 受载含瓦斯煤的三维裂隙体积和裂隙密度均表现出 先减小后增大的发展规律,总体上呈现出裂隙压密 闭合、新裂隙萌生扩展和主裂隙加速扩展贯通3个变 化阶段。 (3)灰度共生矩阵统计分析方法是分析受载含 瓦斯煤裂隙动态扩展和演化的有效手段。灰度共生 矩阵各统计特征值的变化能有效描述受载含瓦斯煤 的裂隙扩展和演化过程。三轴应力条件下,对比度 先减小后单调递增,能量和同质性的先增大后单调 递减,与裂隙的动态演化趋势一致;相关性呈现出 单调递减趋势。 参考文献: [1] Hou Z, Xie H, Zhou H, et al. Unconventional gas resources in China[J]. Environmental Earth Sciences, 2015, 73(10): 5785-5789. [2] Li S, Tang D, Pan Z, et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China[J]. Fuel, 2015, 139: 257-267. [3] Clarkson CR, Bustin RM. The effect of pore structure and gas pressure u p o n t h e t r a n s p o r t p r o p e r t i e s o f c o a l : a l a b o r a t o r y a n d m o d e l i n g s t u d y . 1 . I s o t h e r m s a n d p o r e v o l u m e d i s t r i b u t i o n s [ J ]. F u e l , 1 9 9 9, 78(11): 1333-1344. [4] Wang D, Lv R, Wei J, et al. An experimental study of seepage properties o f g a s - s a t u r a t e d c o a l u n d e r d i f f e r e n t l o a d i n g c o n d i t i o n s [ J ] . E n e r g y Science & Engineering, 2019, 7(3): 799-808. [5] Wang D, Lv R, Wei J, et al. An experimental study of the anisotropic p e r m e a b i l i t y r u l e o f c o a l c o n t a i n i n g g a s [ J ] . J o u r n a l o f N a t u r a l G a s Science and Engineering, 2018, 53(5): 67-73. [ 6 ] Z h o u S , L i u D , C a i Y , e t a l . M u l t i - s c a l e f r a c t a l c h a r a c t e r i z a t i o n s o f l i g n i t e , s u b b i t u m i n o u s a n d h i g h - v o l a t i l e b i t u m i n o u s c o a l s p o r e s b y m e r c u r y i n t r u s i o n p o r o s i m e t r y [ J ] . J o u r n a l o f N a t u r a l G a s Science and Engineering, 2017, 44: 338-350. [7] L i H , O gawa Y , S himada S . M echanism o f m ethane f low t hrough s heared c o a l s a n di t s r o l e o n m e t h a n e r e c o v e r y [ J ]. F u e l, 2 0 0 3, 8 2 ( 1 0 ) :1 2 7 1- 1279. [ 8 ] Z h a o J , X u H , T a n g D , e t a l . C o a l s e a m p o r o s i t y a n d f r a c t u r e h e t e r o g e n e i t y o f m a c r o l i t h o t y p e s i n t h e H a n c h e n g B l o c k , e a s t e r n margin, Ordos Basin, China[J]. International Journal of Coal Geology, 2016, 159: 18-29. [ 9 ] Q i L , T a n g X , W a n g Z , e t a l . P o r e c h a r a c t e r i z a t i o n o f different t ypes o f c oal f rom c oal a nd g as o utburst d isaster s ites u sing l ow t e m p e r a t u r e n i t r o g e n a d s o r p t i o n a p p r o a c h [ J ] . I n t e r n a t i o n a l J o u r n a l of Mining Science and Technology, 2017, 27(2): 371-377. [10] Ni X, Chen W, Li Z, et al. Reconstruction of different scales of pore￾fractures network of coal reservoir and its permeability prediction with M o n t e C a r l o m e t h o d [ J ] . I n t e r n a t i o n a l J o u r n a l o f M i n i n g S c i e n c e a n d Technology, 2017, 27(4): 693-699. [11] Giffin S, Littke R, Klaver J, et al. Application of BIB-SEM technology to characterize macropore morphology in coal[J]. International Journal of Coal Geology, 2013, 114: 85-95. [12] Zhao Y, Sun Y, Liu S, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369. [13] S un C , T ang S , Z hang S , e t a l. N anopore c haracteristics o f l ate p aleozoic 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有