正在加载图片...
igh-speed A/d converters have conversion times typically ranging from 400 ns to 3 us. The higher performance of these devices is achieved by using the successive approximation techniques, and statistically derived A/D conversion techniques. Applications appropriate for these A/D ICs include fast Fourier transform(FFT)analysis, radar digitization, medical instrumentation, and multiplexed data acquisition. Some ICs have been manufactured with an extremely high degree of linearity, to be appropriate for specialized applications in digital spectrum analysis, vibration analysis, geological research, sonar digitizing, and medical imaging Flash A/D converters have conversion times ranging typically from 10 to 50 ns. Flash A/D conversion techniques enable these ICs to be used in many specialized high-speed data acquisition applications such as TV video digitizing(encoding), radar analysis, transient analysis, high-speed digital oscilloscopes, medical ultrasound imaging, high-energy physics, and robotic vision applications. Sampling A/D converters have a sample-and-hold amplifier circuit built into the IC. This eliminates the need for an external sample-and-hold circuit. The throughput of these A/d converter ICs ranges typically from 35 kHz to 100 MHz. The speed of the system is dependent on the a/d technique used by the sampling A/D converter A/D converter ICs produce digital codes in a serial or parallel format, and some ICs offer the designer both formats. The digital outputs are compatible with standard logic families to facilitate interfacing to other digital stems. In addition, some A/D converter ICs have a built-in analog multiplexer and therefore can accept more than one analog input signal Pulse code modulation(PCM) ICs are high-precision A/D converters. The PCM IC is often refered to as a pcm codec with both enco d decoder functions. The encoder portion of the codec performs the A/D conversion, and the decoder portion of the codec performs the D/A conversion. The digital code is usually formatted as a serial data stream for ease of interfacing to digital transmission and multiplexing systems PCM is a technique where an analog signal is sampled, quantized and then encoded as a digital word. The PCM IC can include successive approximation techniques or other techniques to accomplish the PCM encoding In addition, the PCM codec may employ nonlinear data compression techniques, such as companding, if it is necessary to minimize the number of bits in the output digital code. Companding is a logarithmic technique used to compress a code to fewer bits before transmission. The inverse logarithmic function is then used to expand the code to its original number of bits before converting it to the analog signal. Companding is typically resolution of low-amplitude signals. Two standardized companding techniques are used extensively: A-law and u-law. The A-law companding is used in Europe, whereas the u-law is used predominantly in the U.S. and Japan. Linear PCM conversion is used in high-fidelity audio systems to preserve the integrity of the audio signal throughout the entire analog range Digital signal processing(DSP) techniques provide another type of A/D conversion ICs. Specialized A/D conversion such as adaptive differential pulse code modulation(ADPCM), sigma-delta modulation, speech sub- band encoding, adaptive predictive speech encoding, and speech recognition can be accomplished through the use of DSP systems. Some DSP systems require analog front ends that employ traditional PCM codec ICs or DSP interface ICs. These ICs can interface to a digital signal processor for advanced A/D applications. Some manufacturers have incorporated DSP techniques on board the single-chip A/D IC, as in the case of the DSP56ACD16 sigma-delta modulation IC by Motorola. Integrating A/D converters are used for conversions that must take place over a long period of time, such as digital voltmeter applications or sensor applications such as thermocouples. The integrating A/D converter produces a digital code that represents the average of the signal over time. Noise is reduced by means of the signal averaging, or integration Dual-slope integration is accomplished by a counter that advances while an input voltage charges a capacitor in a specified time interval, T. This is compared to another count sequence that advances while a reference voltage discharges across the same capacitor in a time interval, 8 T. The ratio of the charging count value to the discharging count value is proportional to the ration of the input voltage the reference voltage. Hence, the integrating converter provides a digital code that is a measure of the input voltage averaged over time. The conversion accuracy is independent of the capacitor and the clock frequency since they affect both the charging and discharging operations. The charging period, T, is selected to be the c2000 by CRC Press LLC© 2000 by CRC Press LLC High-speed A/D converters have conversion times typically ranging from 400 ns to 3 ms. The higher speed performance of these devices is achieved by using the successive approximation technique, modified flash techniques, and statistically derived A/D conversion techniques. Applications appropriate for these A/D ICs include fast Fourier transform (FFT) analysis, radar digitization, medical instrumentation, and multiplexed data acquisition. Some ICs have been manufactured with an extremely high degree of linearity, to be appropriate for specialized applications in digital spectrum analysis, vibration analysis, geological research, sonar digitizing, and medical imaging. Flash A/D converters have conversion times ranging typically from 10 to 50 ns. Flash A/D conversion techniques enable these ICs to be used in many specialized high-speed data acquisition applications such as TV video digitizing (encoding), radar analysis, transient analysis, high-speed digital oscilloscopes, medical ultrasound imaging, high-energy physics, and robotic vision applications. Sampling A/D converters have a sample-and-hold amplifier circuit built into the IC. This eliminates the need for an external sample-and-hold circuit. The throughput of these A/D converter ICs ranges typically from 35 kHz to 100 MHz. The speed of the system is dependent on the A/D technique used by the sampling A/D converter. A/D converter ICs produce digital codes in a serial or parallel format, and some ICs offer the designer both formats. The digital outputs are compatible with standard logic families to facilitate interfacing to other digital systems. In addition, some A/D converter ICs have a built-in analog multiplexer and therefore can accept more than one analog input signal. Pulse code modulation (PCM) ICs are high-precision A/D converters. The PCM IC is often refered to as a PCM codec with both encoder and decoder functions. The encoder portion of the codec performs the A/D conversion, and the decoder portion of the codec performs the D/A conversion. The digital code is usually formatted as a serial data stream for ease of interfacing to digital transmission and multiplexing systems. PCM is a technique where an analog signal is sampled, quantized, and then encoded as a digital word. The PCM IC can include successive approximation techniques or other techniques to accomplish the PCM encoding. In addition, the PCM codec may employ nonlinear data compression techniques, such as companding, if it is necessary to minimize the number of bits in the output digital code. Companding is a logarithmic technique used to compress a code to fewer bits before transmission. The inverse logarithmic function is then used to expand the code to its original number of bits before converting it to the analog signal. Companding is typically used in telecommunications transmission systems to minimize data transmission rates without degrading the resolution of low-amplitude signals. Two standardized companding techniques are used extensively: A-law and m-law. The A-law companding is used in Europe, whereas the m-law is used predominantly in the U.S. and Japan. Linear PCM conversion is used in high-fidelity audio systems to preserve the integrity of the audio signal throughout the entire analog range. Digital signal processing (DSP) techniques provide another type of A/D conversion ICs. Specialized A/D conversion such as adaptive differential pulse code modulation (ADPCM), sigma-delta modulation, speech sub￾band encoding, adaptive predictive speech encoding, and speech recognition can be accomplished through the use of DSP systems. Some DSP systems require analog front ends that employ traditional PCM codec ICs or DSP interface ICs. These ICs can interface to a digital signal processor for advanced A/D applications. Some manufacturers have incorporated DSP techniques on board the single-chip A/D IC, as in the case of the DSP56ACD16 sigma-delta modulation IC by Motorola. Integrating A/D converters are used for conversions that must take place over a long period of time, such as digital voltmeter applications or sensor applications such as thermocouples. The integrating A/D converter produces a digital code that represents the average of the signal over time. Noise is reduced by means of the signal averaging, or integration. Dual-slope integration is accomplished by a counter that advances while an input voltage charges a capacitor in a specified time interval, T. This is compared to another count sequence that advances while a reference voltage discharges across the same capacitor in a time interval, d T. The ratio of the charging count value to the discharging count value is proportional to the ration of the input voltage to the reference voltage. Hence, the integrating converter provides a digital code that is a measure of the input voltage averaged over time. The conversion accuracy is independent of the capacitor and the clock frequency since they affect both the charging and discharging operations. The charging period, T, is selected to be the
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有