正在加载图片...
10-8 Spin-Spin Splitting:Some Complications Tbr2gnnmav3opewrsasngesenfcaean give rise tonon The inten 2。 when Av),the spectra is said tobe afeagePatpe。n8otcPexshaf neighbors may modify aoz8款8er 5他e、doube Teemaro8aete 99 10-8 Spin-Spin Splitting: Some Complications Complex multiplets sometimes occur when there is a relatively small difference in δ between two absorptions. The N+1 rule may not apply in a direct way if several neighboring hydrogens having fairly different coupling constants are coupled to the resonating nucleus. The hydroxy proton may appear as a single, even if coupled to vicinal hydrogens. Close-lying peak patterns may give rise to non￾first-order spectra. The intensity patterns in many NMR spectra do not follow the idealized pattern of Pascal’s triangle but instead are skewed towards each other. The intensities of the lines facing each other is slightly larger than expected. Perfectly symmetrical splittings are observed only when the resonant frequency difference of the two groups of protons is much larger than the coupling constant between them. When Δν >> J, the spectra is said to be first-order. Non-first-order spectra assume more complex shapes and can only be analyzed with the help of computers. Since the resonant frequency difference increases with higher field strengths (J remains the same), a complicated spectrum can be made first order by measuring it at higher field strengths. Coupling to non-equivalent neighbors may modify the simple N+1 rule. The spectrum of 1,1,2-trichloropropane illustrates the effects of two sets of non-equivalent neighbors. The Ha proton is split by the Hb proton into a doublet as expected. This doublet is at low field due to the effect of two adjacent chlorine atoms. The methyl protons are also split by the Hb proton into a doublet as expected. This doublet is at high field. The Hb proton is split by both Ha and the methyl protons. In this case eight lines are observed because Ha and the methyl protons have different coupling constants to Hb. The methyl group splits the Hb resonance into a quartet (1,3,3,1). Each line of the quartet is then split into a doublet by the Ha proton (1,1,3,3,3,3,1,1)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有