正在加载图片...
·88· 北京科技大学学报 第36卷 数据传输加成像算法的完成时间,采用MATLAB B]Kajiwara Y,Jimbo T,Sakai T.Development of a simulation model 6.0运算,约2~3s完成.估算法成像时间反应速度 for burden distribution at blast furnace top./S/J Int,1983,23 (12):1045 较快,一般<1s. [4]Gao Z K,Liu J,Gao T.Advanced inside-fumace monitoring tech- 图6为贝叶斯融合法拟合料面与激光扫描法 niques implemented on the new large blast fumnace of Shagang / 75点数据比较结果.由图可知,基于雷达的贝叶斯 AISTech Iron Steel Technol.Pittsburgh,2010:565 融合法测量精度与一般的料形估算法相比,成像时 [5] Chen X Z,Liu F M,Hou Q W,et al.Industrial high-temperature 间延长1~2s,但测量精度提高约4.8%. radar and imaging technology in blast fumace burden distribution monitoring process /ICEM/.Beijing,2009:599 Fan Z Y,Igarashi S,Natsui S,et al.Influence of blast furnace 贝叶斯融合法拟合料面 激光扫描法所得75点数据 inner volume on solid flow and stress distribution by three dimen- sional discrete element method./S///nt,2010,50(10):1406 [7]Mio H,Yamamoto K,Shimosaka A,et al.Modeling of solid par- ticle flow in blast fumnace considering actual operation by large- scale discrete element method.IS/J Int,2007,47(12):1745 4 8] Lu K Q,Liu J X.Granular matter.Acta Phys Sin,2004,33 2 4 0 20 2 (10):629 44 径向距离,Rm (陆坤权,刘寄星.颗粒物质.物理学报,2004,33(10): 629) 图6贝叶斯融合法拟合料面与激光扫描法75点数据比较结果 Jia X.Williams RA.A packing algorithm for particles of arbitrary Fig.6 Comparison between fumace surface fitted by Bayes data fu- shapes.Pouder Technol,2001,120(3):175 sion method and 75-point data scanned by laser [10]Chen L K,Yu Z J,Zhou M L,et al.Development and applica- tion of blast furnace burden distribution model.fron Steel,2006, 4结论 41(11):13 (陈令坤,于仲洁,周曼丽,等.高炉布料数学模型的开发及 结合料线检测点位置、高炉布料规律及颗粒物 应用.钢铁,2006,41(11):13) 质堆积特性,提出一种新的基于贝叶斯计算的重构 [11]Chen Z Y,Zhou J X,Wang HJ,et al.The Soil Mechanics.Bei- 高炉料线形状的方法.从计算实例看出,本文推算 jing:Tsinghua University Press,1978 出的炉内料线形状,比传统方法在精确度上更加符 (陈仲顺,周景星,王洪瑾,等.土力学.北京:清华大学出版 社,1978) 合实际料线的结果,该融合测量方法为炼铁工艺基 [12]Zhang H,Guo Y B,Chen X,et al.The distribution of a granu- 于料线形状的节能精准控制提供了可能 lar pile under impact.Acta Phys Sin,2007,56(4):2031 (张航,郭蕴博,陈骁,等。颗粒物质在冲击作用下的堆积分 参考文献 布.物理学报,2007,56(4):2031) Liu Y C.Regularity of Burden Distribution in Blast Furnace.3rd [13]Wu X J,Cao Q Y.Chen B X,et al.Study on multisensor data Ed.Beijing:Metallurgical Industry Press,2006 fusion methods based on Bayes estimation.Syst Eng Theory Pract, (刘云彩.高炉布料规律.3版.北京:治金工业出版社, 2000,20(7):45 2006) (吴小俊,曹奇英,陈保香,等.基于Bycs估计的多传感器 Toyama.Blast Furnace Phenomena and Modeling.New York: 数据融合方法研究.系统工程理论与实践,2000,20(7): Elsevier Applied Science Publishers Ltd.,1987 45)北 京 科 技 大 学 学 报 第 36 卷 数据传输加成像算法的完成时间,采用 MATLAB 6. 0 运算,约 2 ~ 3 s 完成. 估算法成像时间反应速度 较快,一般 < 1 s. 图 6 为贝叶斯融合法拟合料面与激光扫描法 75 点数据比较结果. 由图可知,基于雷达的贝叶斯 融合法测量精度与一般的料形估算法相比,成像时 间延长 1 ~ 2 s,但测量精度提高约 4. 8% . 图 6 贝叶斯融合法拟合料面与激光扫描法 75 点数据比较结果 Fig. 6 Comparison between furnace surface fitted by Bayes data fu￾sion method and 75-point data scanned by laser 4 结论 结合料线检测点位置、高炉布料规律及颗粒物 质堆积特性,提出一种新的基于贝叶斯计算的重构 高炉料线形状的方法. 从计算实例看出,本文推算 出的炉内料线形状,比传统方法在精确度上更加符 合实际料线的结果,该融合测量方法为炼铁工艺基 于料线形状的节能精准控制提供了可能. 参 考 文 献 [1] Liu Y C. Regularity of Burden Distribution in Blast Furnace. 3rd Ed. Beijing: Metallurgical Industry Press,2006 ( 刘云 彩. 高 炉 布 料 规 律. 3 版. 北 京: 冶 金 工 业 出 版 社, 2006) [2] Toyama. Blast Furnace Phenomena and Modeling. New York: Elsevier Applied Science Publishers Ltd. ,1987 [3] Kajiwara Y,Jimbo T,Sakai T. Development of a simulation model for burden distribution at blast furnace top. ISIJ Int,1983,23 ( 12) : 1045 [4] Gao Z K,Liu J,Gao T. Advanced inside-furnace monitoring tech￾niques implemented on the new large blast furnace of Shagang / / AISTech Iron Steel Technol. Pittsburgh,2010: 565 [5] Chen X Z,Liu F M,Hou Q W,et al. Industrial high-temperature radar and imaging technology in blast furnace burden distribution monitoring process / / ICEMI. Beijing,2009: 599 [6] Fan Z Y,Igarashi S,Natsui S,et al. Influence of blast furnace inner volume on solid flow and stress distribution by three dimen￾sional discrete element method. ISIJ Int,2010,50( 10) : 1406 [7] Mio H,Yamamoto K,Shimosaka A,et al. Modeling of solid par￾ticle flow in blast furnace considering actual operation by large￾scale discrete element method. ISIJ Int,2007,47( 12) : 1745 [8] Lu K Q,Liu J X. Granular matter. Acta Phys Sin,2004,33 ( 10) : 629 ( 陆坤权,刘 寄 星. 颗 粒 物 质. 物 理 学 报,2004,33 ( 10 ) : 629) [9] Jia X,Williams R A. A packing algorithm for particles of arbitrary shapes. Powder Technol,2001,120( 3) : 175 [10] Chen L K,Yu Z J,Zhou M L,et al. Development and applica￾tion of blast furnace burden distribution model. Iron Steel,2006, 41( 11) : 13 ( 陈令坤,于仲洁,周曼丽,等. 高炉布料数学模型的开发及 应用. 钢铁,2006,41( 11) : 13) [11] Chen Z Y,Zhou J X,Wang H J,et al. The Soil Mechanics. Bei￾jing: Tsinghua University Press,1978 ( 陈仲颐,周景星,王洪瑾,等. 土力学. 北京: 清华大学出版 社,1978) [12] Zhang H,Guo Y B,Chen X,et al. The distribution of a granu￾lar pile under impact. Acta Phys Sin,2007,56( 4) : 2031 ( 张航,郭蕴博,陈骁,等. 颗粒物质在冲击作用下的堆积分 布. 物理学报,2007,56( 4) : 2031) [13] Wu X J,Cao Q Y,Chen B X,et al. Study on multisensor data fusion methods based on Bayes estimation. Syst Eng Theory Pract, 2000,20( 7) : 45 ( 吴小俊,曹奇英,陈保香,等. 基于 Bayes 估计的多传感器 数据融合方法研究. 系统工程理论与实践,2000,20 ( 7) : 45) ·88·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有