正在加载图片...
·168 北京科技大学学报 第34卷 (图4(c))和15g·min(图4(d))时,TC4粉的球 参考文献 化率迅速降低,其球化率分别为75%和45%. [1]Dias L.Trindade B.Coelho C.et al.Ti-Mg-Si alloys produced by 在射频等离子处理过程中,加料速率是影响 non-equilibrium processing methods:mechanical alloying and TC4粉末球化率的重要因素.图5为加料速率对粉 sputtering.Mater Sci Eng A,2004,364(1/2)273 末球化率的影响图.对比不同加料速率制备的球形 [2]Dabhade VV,Rama Mohan T R,Ramakrishnan P.Nanocrystal- TC4粉末球化率发现,随着加料速率的增加,TC4粉 line titanium powders by high energy attrition milling.Pouder 末的球化率呈逐渐降低的趋势.这主要是因为,当 Technol,2007,171(3):177 其他工艺参数不变时,增大加料速率导致单位时间 [3]Uchida M,Oyane A.Kim H M,et al.Biomimetic coating of lami- nin-patite composite on titanium metal and its excellent cell-adhe- 通过等离子区的粉末增多.然而,系统在固定的工 sive properties.Ade Mater.2004,16(13):1071 艺条件下所提供的能量为定值,难于满足过量粉末 [4]Heinl P.Muiller L.Komer C.et al.Cellular Ti-6Al-4V structures 的吸热、熔融和球化的需要,导致部分粉末未充分吸 with interconnected macro porosity for bone implants fabricated by 热、球化,残余一些原料粉末,粉末球化率降低.此 selective electron beam melting.Acta Biomater,2008,4(5): 外,加料速率的提高致使部分粉末在等离子体中的 1536 运行轨迹紊乱,偏离等离子体高温区,不利于粉末的 [5]Scott Weil K.Nyberg E,Simmons K.A new binder for powder in- 充分吸热,最终导致粉末球化率降低.在一定的工 jection molding titanium and other reactive metals.Mater Process 艺条件下,合理的加料速率是保证粉末高球化率的 Technol,2006,176(13):205 [6]Thian E S,Loh N H,Khor K A,et al.Microstructures and me- 重要条件. chanical properties of powder injection molded Ti-6Al-4V/HA 100 powder.Biomaterials,2002,23(14):2927 [7]Guo S B.Qu X H.He X B.et al.Powder injection molding of 80 Ti-6Al-4V alloy.J Mater Process Technol,2006.173(3):310 [8]Hartwig T.Veltl G.Petzoldt F,et al.Powders for metal injection 60 molding.J Eur Ceram Soc,1998.18(9):1211 [9]Gerling R,Schimansky F P.Prospects for metal injection mould- 0 ing using a gamma titanium aluminide based alloy powder.Mater Sci Eng A.2002.329-331:45 20 [10]Liu X H.Xu G.The Ti and its alloy powder made by inert gas atomization.Powder Metall Ind.2000,10(3):18 1012141618 加料速率gmin (刘学晖,徐广.惰性气体雾化法制取钛和钛合金粉末.粉末 图5加料速率对粉末球化率的影响 治金工业.2000.10(3):18) Fig.5 Spheroidization ratio as a function of feeding rate [11]Yang X.Xi Z P.Liu Y.et al.Characterization of TiAl powders prepared by plasma rotating electrode processing.Rare Met Mater 3结论 Eng,2010.39(12):2251 (杨鑫,奚正平,刘咏,等.等离子旋转电极法制备钛铝粉末 (1)本文以不规则TC4粉末为原料,经过射频 性能表征.稀有金属材料与工程,2010.39(12):2251) 等离子体处理后得到球形TC4粉末.制备的球形 [12]Bai L Y,Fan J M.Hu P,et al.RF plasma synthesis of nickel TC4粉表面光滑、球形度好,最佳的球化率可达 nanopowders via hydrogen reduction of nickel hydroxide/carbon- ate.J Alloys Compd,2009.481(1/2):563 100%. [13]Soucy C.Rahmane M.Fan X B.et al.Heat and mass transfer (2)球化处理后TC4粉末的松装密度、振实密 during in-flight nitridation of molybdenum disilicide powder in an 度和粉末流动性得到明显改善。松装密度由 induction plasma reactor.Mater Sci Eng A,2001,300(1/2): 1.25gcm3提高到2.52g·cm-3,振实密度由 226 2.05gcm-3增加到2.68gcm-3. [14]Kumar R,Cheang P,Khor K A.Radio frequency (RF)suspen- (3)加料速率是球化处理过程中对粉末球化率 sion plasma sprayed ultra-fine hydroxyapatite HA)/zirconia 的重要影响因素.随着加料速率的增加,TC4粉的 composite powders.Biomaterials,2003.24(15):2611 [15]Jiang X L.Boulos M.Induction plasma spheroidization of tung- 球化率降低.在其他工艺参数不变的情况下,加料 sten and molybdenum powders.Trans Nonferrous Met Soc China. 速率在2~5g"min-1可获得高球化率的粉末. 2006,16(1):13北 京 科 技 大 学 学 报 第 34 卷 ( 图 4( c) ) 和 15 g·min - 1 ( 图 4( d) ) 时,TC4 粉的球 化率迅速降低,其球化率分别为 75% 和 45% . 在射频等离子处理过程中,加料速率是影响 TC4 粉末球化率的重要因素. 图 5 为加料速率对粉 末球化率的影响图. 对比不同加料速率制备的球形 TC4 粉末球化率发现,随着加料速率的增加,TC4 粉 末的球化率呈逐渐降低的趋势. 这主要是因为,当 其他工艺参数不变时,增大加料速率导致单位时间 通过等离子区的粉末增多. 然而,系统在固定的工 艺条件下所提供的能量为定值,难于满足过量粉末 的吸热、熔融和球化的需要,导致部分粉末未充分吸 热、球化,残余一些原料粉末,粉末球化率降低. 此 外,加料速率的提高致使部分粉末在等离子体中的 运行轨迹紊乱,偏离等离子体高温区,不利于粉末的 充分吸热,最终导致粉末球化率降低. 在一定的工 艺条件下,合理的加料速率是保证粉末高球化率的 重要条件. 图 5 加料速率对粉末球化率的影响 Fig. 5 Spheroidization ratio as a function of feeding rate 3 结论 ( 1) 本文以不规则 TC4 粉末为原料,经过射频 等离子体处理后得到球形 TC4 粉末. 制备的球形 TC4 粉表面光滑、球形度好,最佳的球化率可达 100% . ( 2) 球化处理后 TC4 粉末的松装密度、振实密 度和 粉 末 流 动 性 得 到 明 显 改 善. 松 装 密 度 由 1. 25 g·cm - 3 提 高 到 2. 52 g·cm - 3 ,振 实 密 度 由 2. 05 g·cm - 3 增加到 2. 68 g·cm - 3 . ( 3) 加料速率是球化处理过程中对粉末球化率 的重要影响因素. 随着加料速率的增加,TC4 粉的 球化率降低. 在其他工艺参数不变的情况下,加料 速率在 2 ~ 5 g·min - 1 可获得高球化率的粉末. 参 考 文 献 [1] Dias L,Trindade B,Coelho C,et al. Ti-Mg-Si alloys produced by non-equilibrium processing methods: mechanical alloying and sputtering. Mater Sci Eng A,2004,364( 1 /2) : 273 [2] Dabhade V V,Rama Mohan T R,Ramakrishnan P. Nanocrystal￾line titanium powders by high energy attrition milling. Powder Technol,2007,171( 3) : 177 [3] Uchida M,Oyane A,Kim H M,et al. Biomimetic coating of lami￾nin-apatite composite on titanium metal and its excellent cell-adhe￾sive properties. Adv Mater,2004,16( 13) : 1071 [4] Heinl P,Müller L,Krner C,et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater,2008,4 ( 5 ) : 1536 [5] Scott Weil K,Nyberg E,Simmons K. A new binder for powder in￾jection molding titanium and other reactive metals. J Mater Process Technol,2006,176( 1-3) : 205 [6] Thian E S,Loh N H,Khor K A,et al. Microstructures and me￾chanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials,2002,23( 14) : 2927 [7] Guo S B,Qu X H,He X B,et al. Powder injection molding of Ti-6Al-4V alloy. J Mater Process Technol,2006,173( 3) : 310 [8] Hartwig T,Veltl G,Petzoldt F,et al. Powders for metal injection molding. J Eur Ceram Soc,1998,18( 9) : 1211 [9] Gerling R,Schimansky F P. Prospects for metal injection mould￾ing using a gamma titanium aluminide based alloy powder. Mater Sci Eng A,2002,329--331: 45 [10] Liu X H,Xu G. The Ti and its alloy powder made by inert gas atomization. Powder Metall Ind,2000,10( 3) : 18 ( 刘学晖,徐广. 惰性气体雾化法制取钛和钛合金粉末. 粉末 冶金工业,2000,10( 3) : 18) [11] Yang X,Xi Z P,Liu Y,et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng,2010,39( 12) : 2251 ( 杨鑫,奚正平,刘咏,等. 等离子旋转电极法制备钛铝粉末 性能表征. 稀有金属材料与工程,2010,39( 12) : 2251) [12] Bai L Y,Fan J M,Hu P,et al. RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide /carbon￾ate. J Alloys Compd,2009,481( 1 /2) : 563 [13] Soucy G,Rahmane M,Fan X B,et al. Heat and mass transfer during in-flight nitridation of molybdenum disilicide powder in an induction plasma reactor. Mater Sci Eng A,2001,300 ( 1 /2) : 226 [14] Kumar R,Cheang P,Khor K A. Radio frequency ( RF) suspen￾sion plasma sprayed ultra-fine hydroxyapatite ( HA ) /zirconia composite powders. Biomaterials,2003,24( 15) : 2611 [15] Jiang X L,Boulos M. Induction plasma spheroidization of tung￾sten and molybdenum powders. Trans Nonferrous Met Soc China, 2006,16( 1) : 13 ·168·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有