正在加载图片...
·870. 工程科学学报,第40卷,第7期 表4V=15ms1时不同时刻2~4试验件覆冰质量减少率 污研究现状.电工技术学报.2017,32(16):61) Table 4 Quality reduction rate of ice coating at different times from2 to [5]We Y,Li J,Lu M,et al.Investigation on insulation performance 4*atV=15m-s-1 of insulators coated with super-hydrophobic coating in artificial fog- 相对无涂层1*覆冰质量减少率/% haze environment.High Volt Eng,2017,43(7):2316 时间/min 2* 又w (魏远,李剑,卢明,等.人工雾霾环境下超疏水涂层绝缘子 3* 运行性能研究.高电压技术,2017,43(7):2316) 10 10.3 22.6 33.7 [6]Chen ML,Zhang L M,Yang L,et al.Hydrophobic structure and 20 1.3 13.4 21.4 antifouling performance of the low surface energy marine coating. 30 3.1 12.1 27.1 Ship Eng,2010,32(6):64 (陈美玲,张力明,杨莉,等.低表面能船舶防污涂料的疏水 40 8.1 11.5 31.2 结构及防污性能.船舶工程,2010,32(6):64) 50 6.6 9.9 25.9 [7]Huang J J.Zhang YQ,Yang M L,et al.Preparation of superhy- drophobic materials by particle-assisted breath figure method. (2)利用不同硅烷间水解缩合反应实现氟化改 Polym Mater Sci Eng.2017,33(5):142 性硅树脂的制备,并将二氧化硅微粒与改性硅树脂 (黄俊杰,张尹桥,杨曼玲,等.通过粒子辅助水滴模板法制 混合制备疏水涂层,扫描电镜测试表面形貌,掺混不 备超疏水材料.高分子材料科学与工程,2017,33(5):142) [8]Fan Z D,Sun Q J.Huang Y H,et al.Application of silicone ma- 同粒径二氧化硅微粒制备的疏水涂层表面形成复合 terials in aviation industry.Silicon Mater,2015,29(6):491 微观结构,较单一粒径掺混的涂层表面有着更好的 (范召东,孙全吉,黄艳华,等.有机硅材料在航空工业的应 粗糙度. 用.有机硅材料,2015,29(6):491) (3)测试不同涂层表面水滴接触角大小,含氟 [9]Wu JL,Jiao PF,Zhuang W,et al.Modified DIX model for ion- 硅树脂表面水滴接触角大小较普通硅树脂提升 exchange equilibrium of L-phenylalanine on a strong cation-ex- change resin.Chin J Chem Eng,2016,24(10):1386 10°,疏水效果提升明显;利用分形理论制备的含两 [10]Wang A R,Shao Y,Yi L M,et al.Surface properties of PMTF- 种粒径微粒的涂层接触角达到152°,接触角滞后低 PS-b-PMMA/PMMA polymer blend films.J Zhejiang Sci-Tech 于10°,达到超疏水表面效果. Univ Nat Sci,.2017,37(6):804 (4)涂层覆冰试验结果显示,涂层防覆冰能力 (王爱瑞,邵英,易玲敏,等.PMTFPS-b-PMMA/PMA共混 与材料表面疏水性正相关,超疏水涂层涂覆的表面 聚合物膜的表面性质.浙江理工大学学报(自然科学版), 防覆冰效果稳定,结冰过程中可在较大风速范围保 2017,37(6):804) [11] Barthlott W,Neinhuis C.Purity of the sacred lotus,or escape 持较好防覆冰能力,且有效防覆冰时间长 from contamination in biological surfaces.Planta,1997,202 (1):1 参考文献 12]Wenzel R N.Resistance of solid surfaces to wetting by water.Ind [1]Lin G P.Bu X Q.Shen X B,et al.Aircraft leing and Anti-icing Eng Chem,1936,28(8):988 Technology.Beijing:Beihang University Press,2016 [13]Cassie A,Baxter S.Wettability of porous surfaces.Trans Fara- (林贵平,卜雪琴,申晓斌,等.飞机结冰与防冰技术.北京: day Soc.1944,40:546 北京航空航天大学出版社,2016) [14]Zhu H,Ji C C.Theory and Its Application.Beijing:Science [2]Hu JL,Wu Y.Jiang X L,et al.Icing process on the surface of Press,2011 insulators with super-hydrophobic coatings.High Volt Eng,2014. (朱华,姬翠翠.分形理论及其应用.北京:科学出版社, 40(5):1320 2011) (胡建林,吴尧,蒋兴良,等.涂覆超疏水涂层绝缘子表面覆 [15]Nie Q,Ji Z Y.Liu J X,et al.Surface nanostructures orienting 冰过程.高电压技术,2014,40(5):1320) self-protection of an orthodontic nickel-titanium shape memory al- [3]Nosonovsky M.Bhushan B.Multiscale Dissipatire Mechanisms and loys wire.Chin Sci Bull,2007,52(21):3020 Hierarchical Surface:Friction,Superhydrophobicity,and Biomime- [16]Furmidge C G L.Studies at phase interfaces.I.The sliding of tics.Springer Science Business Media,2008 liquid drops on solid surfaces and a theory for spray retention. [4]LiJ,Wang X W,Huang Z Y,et al.Research of preparation,an- Colloid Sci,1962,17(4):309 ti-icing and anti-pollution of super hydrophobic insulation coat- [17]Extrand C W,Kumagai Y.Liquid drops on an inclined plane: ings.Trans China Electrotech Soc,2017,32(16):61 the relation between contact angles,drop shape,retentive force. (李剑,王湘雯,黄正勇,等.超疏水绝缘涂层制备与防冰、防 J Colloid Interface Sci,1995,170(2):515工程科学学报,第 40 卷,第 7 期 表 4 V = 15 m·s - 1时不同时刻 2 # ~ 4 #试验件覆冰质量减少率 Table 4 Quality reduction rate of ice coating at different times from 2 # to 4 # at V = 15 m·s - 1 时间/ min 相对无涂层 1 #覆冰质量减少率/ % 2 # 3 # 4 # 10 10郾 3 22郾 6 33郾 7 20 1郾 3 13郾 4 21郾 4 30 3郾 1 12郾 1 27郾 1 40 8郾 1 11郾 5 31郾 2 50 6郾 6 9郾 9 25郾 9 (2)利用不同硅烷间水解缩合反应实现氟化改 性硅树脂的制备,并将二氧化硅微粒与改性硅树脂 混合制备疏水涂层,扫描电镜测试表面形貌,掺混不 同粒径二氧化硅微粒制备的疏水涂层表面形成复合 微观结构,较单一粒径掺混的涂层表面有着更好的 粗糙度. (3)测试不同涂层表面水滴接触角大小,含氟 硅树脂表面水滴接触角大小较普通硅树脂提升 10毅,疏水效果提升明显;利用分形理论制备的含两 种粒径微粒的涂层接触角达到 152毅,接触角滞后低 于 10毅,达到超疏水表面效果. (4)涂层覆冰试验结果显示,涂层防覆冰能力 与材料表面疏水性正相关,超疏水涂层涂覆的表面 防覆冰效果稳定,结冰过程中可在较大风速范围保 持较好防覆冰能力,且有效防覆冰时间长. 参 考 文 献 [1] Lin G P, Bu X Q, Shen X B, et al. Aircraft Icing and Anti鄄icing Technology. Beijing: Beihang University Press, 2016 (林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术. 北京: 北京航空航天大学出版社, 2016) [2] Hu J L, Wu Y, Jiang X L, et al. Icing process on the surface of insulators with super鄄hydrophobic coatings. High Volt Eng, 2014, 40(5): 1320 (胡建林, 吴尧, 蒋兴良, 等. 涂覆超疏水涂层绝缘子表面覆 冰过程. 高电压技术, 2014, 40(5): 1320) [3] Nosonovsky M, Bhushan B. Multiscale Dissipative Mechanisms and Hierarchical Surface: Friction, Superhydrophobicity, and Biomime鄄 tics. Springer Science & Business Media, 2008 [4] Li J, Wang X W, Huang Z Y, et al. Research of preparation, an鄄 ti鄄icing and anti鄄pollution of super hydrophobic insulation coat鄄 ings. Trans China Electrotech Soc, 2017, 32(16): 61 (李剑, 王湘雯, 黄正勇, 等. 超疏水绝缘涂层制备与防冰、防 污研究现状. 电工技术学报, 2017, 32(16): 61) [5] We Y, Li J, Lu M, et al. Investigation on insulation performance of insulators coated with super鄄hydrophobic coating in artificial fog鄄 haze environment. High Volt Eng, 2017, 43(7): 2316 (魏远, 李剑, 卢明, 等. 人工雾霾环境下超疏水涂层绝缘子 运行性能研究. 高电压技术, 2017, 43(7): 2316) [6] Chen M L, Zhang L M, Yang L, et al. Hydrophobic structure and antifouling performance of the low surface energy marine coating. Ship Eng, 2010, 32(6): 64 (陈美玲, 张力明, 杨莉, 等. 低表面能船舶防污涂料的疏水 结构及防污性能. 船舶工程, 2010, 32(6): 64) [7] Huang J J, Zhang Y Q, Yang M L, et al. Preparation of superhy鄄 drophobic materials by particle鄄assisted breath figure method. Polym Mater Sci Eng, 2017, 33(5): 142 (黄俊杰, 张尹桥, 杨曼玲, 等. 通过粒子辅助水滴模板法制 备超疏水材料. 高分子材料科学与工程, 2017, 33(5): 142) [8] Fan Z D, Sun Q J, Huang Y H, et al. Application of silicone ma鄄 terials in aviation industry. Silicon Mater, 2015, 29(6): 491 (范召东, 孙全吉, 黄艳华, 等. 有机硅材料在航空工业的应 用. 有机硅材料, 2015, 29(6): 491) [9] Wu J L, Jiao P F, Zhuang W, et al. Modified DIX model for ion鄄 exchange equilibrium of L鄄phenylalanine on a strong cation鄄ex鄄 change resin. Chin J Chem Eng, 2016, 24(10): 1386 [10] Wang A R, Shao Y, Yi L M, et al. Surface properties of PMTF鄄 PS鄄b鄄PMMA/ PMMA polymer blend films. J Zhejiang Sci鄄Tech Univ Nat Sci, 2017, 37(6): 804 (王爱瑞, 邵英, 易玲敏, 等. PMTFPS鄄b鄄PMMA/ PMMA 共混 聚合物膜的表面性质. 浙江理工大学学报(自然科学版), 2017, 37(6): 804) [11] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202 (1): 1 [12] Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28(8): 988 [13] Cassie A, Baxter S. Wettability of porous surfaces. Trans Fara鄄 day Soc, 1944, 40: 546 [14] Zhu H, Ji C C. Theory and Its Application. Beijing: Science Press, 2011 (朱华, 姬翠翠. 分形理论及其应用. 北京: 科学出版社, 2011) [15] Nie Q, Ji Z Y, Liu J X, et al. Surface nanostructures orienting self鄄protection of an orthodontic nickel鄄titanium shape memory al鄄 loys wire. Chin Sci Bull, 2007, 52(21): 3020 [16] Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci, 1962, 17(4): 309 [17] Extrand C W, Kumagai Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, retentive force. J Colloid Interface Sci, 1995, 170(2): 515 ·870·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有