正在加载图片...
ADVANCED ENGINEERING Valiev et al./Nanostructured Titanium for Biomedical Applications MATERIALS preliminary results being extremely encouraging. Further clinical studies are presently underway with an enlarged,1000 patient,population. M Received:January 30,2008 Final version:May 26,2008 ATIO Fig.3.Occupation of the mice fibroblast cells 1929 after 24 hours;Nanostructured (left)and con- ventional (right)CP Grade 4 titanium. [ M.Niinomi,Metal Mater.Trans A 2002,33 A, 云 477. Table 2.Surface cell occupation for conventional and nanostructured CP Grade 4 titanium [21 R.Boyer,G.Welsch,E.Collings,Mater.Proper- ties Handbook:Titanium Alloys ASM Interna- tional,1998. Material Surface treatment Occupied surface Ipct.] after 72 hours [31 D.M.Brunette,P.Tengvall,M.Textor,P.Thom- CP Gr.4Ti Machining,followed by 53.0 sen,Titanium in Med.Springer-Verlag Berlin hydrofluoric acid etching Heidelberg,2003. Nanostructured Gr.4 Ti 872 [4]R.Z.Valiev,Nature Mater.2004,3,511. [5]V.V.Stolyarov,V.V.Latysh,R.Z.Valiev, Y.T.Zhu,T.C.Lowe,Investigations and Appl. of Severe Plastic Deformation,Kluwer Academic Publishers 2000. [6]Y.T.Zhu,T.C.Lowe,R.Z.Valiev,V.V.Stolyarov, V.V.Latysh,G.I.Raab,U.S Patent 6399 215,2002. [7]V.V.Latysh,I.P.Semenova,G.H.Salimgareeva,I.V. Kandarov,Y.T.Zhu,T.C.Lowe,R.Z.Valiev,Mater. Sci.F0rum2006,503-504,763. [8]R.Z.Valiev,A.V.Sergueeva,A.K.Mukherjee,Scr.Ma- ter200349,669. [9]C.Yao,E.B.Slamovich,J.Qazi,H.J.Rack,T.J.Web- ster,Ceram.Trans.2005,159,239. [10]R.Z.Valiev,T.G.Langdon,Progr.Mater.Sci 2006,51, Fig.4.3.5 mm diameter Timplan(above)and 2.4 mm diameter Nanoimplant (be 881. loe以. [11]R.Z.Valiev,R.K.Islamgaliev,I.V.Alexandrov,Progr. Mater..Sci.2000,45,103. Furthermore,cytocompatibility studies with fibroblast mice [12]J.Petruzelka,L.Dluhos,D.Hrusak,J.Sochova,Sb.Ved. cells L929 have indicated that the nanostructured Ti surface Pr.Vys.Sk.banske-Tech.Univ.Ostrava.2006,roc.LII.c. has significantly higher cell colonization,suggesting more 1.cd.1517.ISSN1210-0471,177. rapid osseointegration.Nanostructured(Nanoimplants)im- [13]S.Faghihi,A.P.Zhilyaev,J.A.Szpunar,F.Azari, plants have been successfully designed and fabricated.Clini- H.Vali,M.Tabrizian,Ado.Mater.2007,19,1069. cal trials with over 250 patients,most of them receiving im- [14]S.Faghihi,F.Azari,A.P.Zhilyaev,J.A.Szpunar, mediate load implants,have shown no adverse effects, H.Vali,M.Tabrizian,Biomater.2007,28,3887 ADVANCED ENGINEERING MATERIALS 2008,10,No.8 @2008 WILEY-VCH Verlag GmbH Co.KGaA,Weinheim http://www.aem-journal.comFurthermore, cytocompatibility studies with fibroblast mice cells L929 have indicated that the nanostructured Ti surface has significantly higher cell colonization, suggesting more rapid osseointegration. Nanostructured (Nanoimplants®) im￾plants have been successfully designed and fabricated. Clini￾cal trials with over 250 patients, most of them receiving im￾mediate load implants, have shown no adverse effects, preliminary results being extremely encouraging. Further clinical studies are presently underway with an enlarged, 1000 patient, population. Received: January 30, 2008 Final version: May 26, 2008 – [1] M. Niinomi, Metal Mater. Trans A 2002, 33 A, 477. [2] R. Boyer, G. Welsch, E. Collings, Mater. Proper￾ties Handbook: Titanium Alloys ASM Interna￾tional, 1998. [3] D. M. Brunette, P. Tengvall, M. Textor, P. Thom￾sen, Titanium in Med. Springer-Verlag Berlin Heidelberg, 2003. [4] R. Z. Valiev, Nature Mater. 2004, 3, 511. [5] V. V. Stolyarov, V. V. Latysh, R. Z. Valiev, Y. T. Zhu, T. C. Lowe, Investigations and Appl. of Severe Plastic Deformation, Kluwer Academic Publishers 2000. [6] Y. T. Zhu, T. C. Lowe, R. Z. Valiev, V. V. Stolyarov, V. V. Latysh, G. I. Raab, U.S Patent 6399 215, 2002. [7] V. V. Latysh, I. P. Semenova, G. H. Salimgareeva, I. V. Kandarov, Y. T. Zhu, T. C. Lowe, R. Z. Valiev, Mater. Sci. Forum 2006, 503–504, 763. [8] R. Z. Valiev, A. V. Sergueeva, A. K. Mukherjee, Scr. Ma￾ter 2003, 49, 669. [9] C. Yao, E. B. Slamovich, J. Qazi, H. J. Rack, T. J. Web￾ster, Ceram. Trans. 2005, 159, 239. [10] R. Z. Valiev, T. G. Langdon, Progr. Mater. Sci 2006, 51, 881. [11] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Progr. Mater. Sci. 2000, 45, 103. [12] J. Petruzˇelka, L. Dluhoš, D. Hrušák, J. Sochová, Sb. Ved. Pr. Vys. Šk. bánské – Tech. Univ. Ostrava. 2006, roc. LII. c. 1. cl. 1517. ISSN 1210-0471, 177. [13] S. Faghihi, A. P. Zhilyaev, J. A. Szpunar, F. Azari, H. Vali, M. Tabrizian, Adv. Mater. 2007, 19, 1069. [14] S. Faghihi, F. Azari, A. P. Zhilyaev, J. A. Szpunar, H. Vali, M. Tabrizian, Biomater. 2007, 28, 3887. ______________________ Valiev et al./Nanostructured Titanium for Biomedical Applications COMMUNICATIONS ADVANCED ENGINEERING MATERIALS 2008, 10, No. 8 © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 3 Table 2. Surface cell occupation for conventional and nanostructured CP Grade 4 titanium. Material Surface treatment Occupied surface [pct.] after 72 hours CP Gr. 4 Ti Machining, followed by hydrofluoric acid etching 53.0 Nanostructured Gr. 4 Ti 87.2 Fig. 3. Occupation of the mice fibroblast cells L929 after 24 hours; Nanostructured (left) and con￾ventional (right) CP Grade 4 titanium. Fig. 4. 3.5 mm diameter Timplant® (above) and 2.4 mm diameter Nanoimplant® (be￾low)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有