正在加载图片...
郭德勇等:煤层深孔聚能爆破有效致裂范围探讨 ·589· 80%;其次是No.5和No.6观察孔,观察孔内平均 cumulative blasting in coal seam and its application.Chin Eng. 瓦斯体积分数增长率均超过55%:而距离炮孔较 2016,38(12):1681 (郭德勇,赵杰超,吕鹏飞,等.煤层深孔聚能爆破动力效应 远的No.7、No.8观察孔内平均瓦斯体积分数增幅 分析与应用.工程科学学报,2016,38(12):1681) 较小.表明距离炮孔较近的No.1~No.4观察孔 [4]Liu J,Liu Z G,Gao K,et al.Experimental study and application 处煤体受聚能爆破的影响较大,爆生裂隙密集,增 of directional focused energy blasting in deep boreholes.Chin 透效果较好:No.5、No.6观察孔处煤体受聚能爆 Rock Mech Eng,2014,33(12):2490 破的影响减弱,爆生裂隙相对稀疏,增透效果减 (刘健,刘泽功,高魁,等.深孔定向聚能爆破增透机制模拟 弱:而距离炮孔较远的No.7、No.8观察孔处煤体 试验研究及现场应用.岩石力学与工程学报,2014,33(12): 2490) 受聚能爆破的影响较小,可认为这两个观察孔内 [5]Mu C M.Wang H L,Huang W Y,et al.Increasing permeability 瓦斯体积分数的增加主要由煤体的弹性变形所引 mechanism using directional cumulative blasting in coal seams with 起,但裂隙发育程度较低,增透效果不理想 high concentration of gas and low permeability.Rock Soil Mech, 综上所述,随着远离炮孔,各个观察孔内瓦斯体 2013,34(9):2496 积分数增幅受聚能爆破的影响呈“强-中-弱”阶梯 (穆朝民,王海露,黄文尧,等.高瓦斯低透气性煤体定向聚 能爆破增透机制.岩土力学,2013,34(9):2496) 状变化,这与所构建的聚能爆破致裂分区模型相吻 [6]Kutter H K,Fairhurst C.On the fracture process in blasting.Int J 合,即聚能爆破载荷下煤层裂隙具有一定的分区特 Rock Mech Min Sci Geomech Abstracts,1971,8(3):181 征,主裂隙扩展区及其内部区域组成了聚能爆破的 [7]Chen S H,Wang M Y,Zhao Y T,et al.Time-stress history on 有效致裂范围. interface between cracked and uncracked zones under rock blas- ting.Chin J Rock Mech Eng,2003,22(11):1784 5结论 (陈士海,王明洋,赵跃堂,等.岩石爆陂破坏界面上的应力 时程研究.岩石力学与工程学报.2003,22(11):1784) (1)构建了煤层深孔聚能爆破致裂分区模型: [8]Guo D Y,Lii P F,Pei H B,et al.Numerical simulation on crack 自炮孔向外依次划分为压碎区、裂隙区和弹性变形 propagation of coal bed deep-hole cumulative blasting.J China 区.其中,根据裂隙类型及裂隙数目的差异,又可将 Coal Soc,2012,37(2):274 裂隙区细分为裂隙密集区和主裂隙扩展区 (郭德勇,吕鹏飞,裴海波,等.煤层深孔聚能爆破裂隙扩展 (2)受聚能装药结构的影响,聚能爆破压碎区 数值模拟.煤炭学报,2012,37(2):274) 呈聚能罩开口方向范围小而垂直于聚能罩开口方向 [9 Zong Q.Calculation of radius of cracked zone in rock by blast-in- duced stress wave.Blasting,1994(2):15 范围大的类椭圆状:而裂隙密集区和主裂隙扩展区 (宗琦.岩石内爆炸应力波破裂区半径的计算.爆破,1994 均呈聚能罩开口方向范围大而垂直于聚能罩开口方 (2):15) 向范围小的类椭圆状. [10]Gao J S,Zhang J C.Dynamic analysis of fracturing mechanism of (3)工程试验结果表明,随着远离炮孔,各个观 rock under explosion.Met Mine,1989(9):7 察孔内瓦斯体积分数增幅受聚能爆破的影响呈 (高金石,张继春.爆破破岩机理动力分析.金属矿山,1989 (9):7) “强-中-弱”阶梯状变化,即聚能爆破载荷下煤层裂 [11]Dai J.Calculation of radii of the broken and cracked areas in 隙具有明显的分区特征,压碎区、裂隙密集区和主裂 rock by a long charge explosion.J Liaoning Tech Unie Nat Sci 隙扩展区组成了聚能爆破的有效致裂范围. Ed,2001,20(2):144 (戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算.辽宁工 参考文献 程技术大学学报(自然科学版),2001,20(2):144) [1]Guo D Y,Zhao J C.Zhang C,et al.Mechanism of control hole [12]Esen S,Onederra I.Bilgin H A.Modelling the size of the on coal crack initiation and propagation under deep-hole cumula- crushed zone around a blasthole.Int Rock Mech Min Sci,2003, tive blasting in coal seam.Chin J Rock Mech Eng,2018,37(4): 40(4):485 919 [13]Far MS,Wang Y.Probabilistic analysis of crushed zone for rock (郭德勇,赵杰超,张超,等煤层深孔聚能爆破控制孔作用 blasting.Comput Geotech,2016,80:290 机制研究.岩石力学与工程学报,2018,37(4):919) [14]Zhu Z M,Mohanty B,Xie H P.Numerical investigation of blas- [2]Gong M,Liu W B,Wang D S,et al.Controlled blasting tech- ting-induced crack initiation and propagation in rocks.IntRock nique to improve gas pre-drainage effect in a coal mine.Unig Sci Mech Min Sci,2007,44(3):412 Technol Beijing,2006,28(3):223 [15]Zhu WC,Wei C H,Li S,et al.Numerical modeling on destress (龚敏,刘万波,王德胜,等.提高煤矿瓦斯抽放效果的控制 blasting in coal seam for enhancing gas drainage.Int /Rock Mech 爆破技术.北京科技大学学报,2006,28(3):223) Min Sci,2013,59:179 [3]Guo D Y,Zhao J C,Lii P F,et al.Dynamic effects of deep-hole [16]Yilmaz 0,Unlu T.Three dimensional numerical rock damage郭德勇等: 煤层深孔聚能爆破有效致裂范围探讨 80% ;其次是 No. 5 和 No. 6 观察孔,观察孔内平均 瓦斯体积分数增长率均超过 55% ;而距离炮孔较 远的 No. 7、No. 8 观察孔内平均瓦斯体积分数增幅 较小. 表明距离炮孔较近的 No. 1 ~ No. 4 观察孔 处煤体受聚能爆破的影响较大,爆生裂隙密集,增 透效果较好;No. 5、No. 6 观察孔处煤体受聚能爆 破的影响减弱,爆生裂隙相对稀疏,增透效果减 弱;而距离炮孔较远的 No. 7、No. 8 观察孔处煤体 受聚能爆破的影响较小,可认为这两个观察孔内 瓦斯体积分数的增加主要由煤体的弹性变形所引 起,但裂隙发育程度较低,增透效果不理想. 综上所述,随着远离炮孔,各个观察孔内瓦斯体 积分数增幅受聚能爆破的影响呈“强鄄鄄 中鄄鄄 弱冶阶梯 状变化,这与所构建的聚能爆破致裂分区模型相吻 合,即聚能爆破载荷下煤层裂隙具有一定的分区特 征,主裂隙扩展区及其内部区域组成了聚能爆破的 有效致裂范围. 5 结论 (1)构建了煤层深孔聚能爆破致裂分区模型: 自炮孔向外依次划分为压碎区、裂隙区和弹性变形 区. 其中,根据裂隙类型及裂隙数目的差异,又可将 裂隙区细分为裂隙密集区和主裂隙扩展区. (2)受聚能装药结构的影响,聚能爆破压碎区 呈聚能罩开口方向范围小而垂直于聚能罩开口方向 范围大的类椭圆状;而裂隙密集区和主裂隙扩展区 均呈聚能罩开口方向范围大而垂直于聚能罩开口方 向范围小的类椭圆状. (3)工程试验结果表明,随着远离炮孔,各个观 察孔内瓦斯体积分数增幅受聚能爆破的影响呈 “强鄄鄄中鄄鄄弱冶阶梯状变化,即聚能爆破载荷下煤层裂 隙具有明显的分区特征,压碎区、裂隙密集区和主裂 隙扩展区组成了聚能爆破的有效致裂范围. 参 考 文 献 [1] Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep鄄hole cumula鄄 tive blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919 (郭德勇, 赵杰超, 张超, 等. 煤层深孔聚能爆破控制孔作用 机制研究. 岩石力学与工程学报, 2018, 37(4): 919) [2] Gong M, Liu W B, Wang D S, et al. Controlled blasting tech鄄 nique to improve gas pre鄄drainage effect in a coal mine. J Univ Sci Technol Beijing, 2006, 28(3): 223 (龚敏, 刘万波, 王德胜, 等. 提高煤矿瓦斯抽放效果的控制 爆破技术. 北京科技大学学报, 2006, 28(3): 223) [3] Guo D Y, Zhao J C, L俟 P F, et al. Dynamic effects of deep鄄hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681 (郭德勇, 赵杰超, 吕鹏飞, 等. 煤层深孔聚能爆破动力效应 分析与应用. 工程科学学报, 2016, 38(12): 1681) [4] Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490 (刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟 试验研究及现场应用. 岩石力学与工程学报, 2014, 33(12): 2490) [5] Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496 (穆朝民, 王海露, 黄文尧, 等. 高瓦斯低透气性煤体定向聚 能爆破增透机制. 岩土力学, 2013, 34(9): 2496) [6] Kutter H K, Fairhurst C. On the fracture process in blasting. Int J Rock Mech Min Sci Geomech Abstracts, 1971, 8(3): 181 [7] Chen S H, Wang M Y, Zhao Y T, et al. Time鄄stress history on interface between cracked and uncracked zones under rock blas鄄 ting. Chin J Rock Mech Eng, 2003, 22(11): 1784 (陈士海, 王明洋, 赵跃堂, 等. 岩石爆破破坏界面上的应力 时程研究. 岩石力学与工程学报, 2003, 22(11): 1784) [8] Guo D Y, L俟 P F, Pei H B, et al. Numerical simulation on crack propagation of coal bed deep鄄hole cumulative blasting. J China Coal Soc, 2012, 37(2): 274 (郭德勇, 吕鹏飞, 裴海波, 等. 煤层深孔聚能爆破裂隙扩展 数值模拟. 煤炭学报, 2012, 37(2): 274) [9] Zong Q. Calculation of radius of cracked zone in rock by blast鄄in鄄 duced stress wave. Blasting, 1994(2): 15 (宗琦. 岩石内爆炸应力波破裂区半径的计算. 爆破, 1994 (2): 15) [10] Gao J S, Zhang J C. Dynamic analysis of fracturing mechanism of rock under explosion. Met Mine, 1989(9): 7 (高金石, 张继春. 爆破破岩机理动力分析. 金属矿山, 1989 (9): 7) [11] Dai J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion. J Liaoning Tech Univ Nat Sci Ed, 2001, 20(2): 144 (戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算. 辽宁工 程技术大学学报(自然科学版), 2001, 20(2): 144) [12] Esen S, Onederra I, Bilgin H A. Modelling the size of the crushed zone around a blasthole. Int J Rock Mech Min Sci, 2003, 40(4): 485 [13] Far M S, Wang Y. Probabilistic analysis of crushed zone for rock blasting. Comput Geotech, 2016, 80: 290 [14] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blas鄄 ting鄄induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 [15] Zhu W C, Wei C H, Li S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min Sci, 2013, 59: 179 [16] Yilmaz O, Unlu T. Three dimensional numerical rock damage ·589·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有