正在加载图片...
3880 CARB0N50(20I2)3876-3881 UDEL 目 3.0y20wD8.7mm100m Fig.8-Scanning electron micrograph depicting a failed CSF specimen end. REFERENCES 100 pull-out -G R 80 [1]Vigolo B,Penicaud A,Coulon C,Sauder C,Pailler R,Journet C, et al.Macroscopic fibers and ribbons of oriented carbon nanotubes.Science 2000:290:1331-4. 60 [2]Koziol K,Vilatela J,Moisala A,Motta M,Cunniff P,Sennett M, et al.High-performance carbon nanotube fiber.Science 2007:318:1892-5. 0 ⊙ [3]Barbero EJ.Introduction to Composite Materials Design.Ann Arbor,MI:Edward Brothers;1998.pp.25-26. [4]Dalton AB,Collins S,Munoz E,Razal JM,Ebron VH,Ferraris JP, et al.Super-tough carbon-nanotube fibers.Nature 2003:423:703. 0 [5]Ericson LM,Fan H,Peng HQ,Davis VA,Zhou W,Sulpizio J, 02468101214160246810121416 et al.Macroscopic,neat,single-walled carbon nanotube e(% fibers.Science2004;305:1447-50. [6]Miaudet P,Badaire S,Maugey M,Derre A,Pichot V,Launois P. Fig.9-Electromechanical response to dynamic tension et al.Hot-drawing of single and multiwall carbon nanotube loading for two 3.18 mm gage CSF specimens:pull-out vs. fibers for high toughness and alignment.Nano Lett brittle failure. 2005,5(11):2212-5. [7]Zhang M,Atkinson KR,Baughman RH.Multifunctional carbon nanotube fiber yarns by downsizing an ancient technology.Science 2004;306:1358-61. electrical responses of the CNT fibers to different damage sce- [8]Zhang XB,Jiang KL,Feng C,Liu P,Zhang LN,Kong J,et al. narios (i.e.,brittle failure vs.pull-out).This behavior,coupled Spinning and processing continuous yarns from 4-inch wafer with their superior mechanical properties supports the scale super-aligned carbon nanotube arrays.Adv Mater hypothesis that these CVD produced CNT fibers may be used 2006;18:1505-10. for reinforcement and sensing applications in dynamically- [9]Zhang XF,Li QW,Holesinger TG,Arendt PN,Huang JY,Kirven loaded,high performance composites,such as combined PD,et al.Ultrastrong,stiff,and lightweight carbon-nanotube fibers.Adv Mater 2007;19:4198-201. structural and ballistic applications. [10]Zhang SJ,Koziol K,Kinloch IA,Windle AH.Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.Small Acknowledgements 2008:4(⑧):1217-22. [11]Gao Y,Li JZ,Liu LQ,Ma WJ,Zhou WY,Xie SS,et al.Axial Amanda S.Wu and Tsu-Wei Chou acknowledge the support compression of hierarchically structured carbon nanotube of the U.S.Air Force Office of Scientific Research(Dr.Byung- fiber embedded in epoxy.Adv Funct Mater 2010;20:3797-803 [12]Deng F,Lu WB,Zhao HB,Zhu YT,Kim BS,Chou TW.The Lip Lee,Program Director).The authors would also like to properties of dry-spun carbon nanotube fibers and their acknowledge Dr.Dirk Heider for helpful discussions on elec interfacial shear strength in an epoxy composite.Carbon trical measurement methodology. 2011;49:1752-7.electrical responses of the CNT fibers to different damage sce￾narios (i.e., brittle failure vs. pull-out). This behavior, coupled with their superior mechanical properties supports the hypothesis that these CVD produced CNT fibers may be used for reinforcement and sensing applications in dynamically￾loaded, high performance composites, such as combined structural and ballistic applications. Acknowledgements Amanda S. Wu and Tsu-Wei Chou acknowledge the support of the U.S. Air Force Office of Scientific Research (Dr. Byung￾Lip Lee, Program Director). The authors would also like to acknowledge Dr. Dirk Heider for helpful discussions on elec￾trical measurement methodology. REFERENCES [1] Vigolo B, Pe´nicaud A, Coulon C, Sauder C, Pailler R, Journet C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000;290:1331–4. [2] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, et al. High-performance carbon nanotube fiber. Science 2007;318:1892–5. [3] Barbero EJ. Introduction to Composite Materials Design. Ann Arbor, MI: Edward Brothers; 1998. pp. 25–26. [4] Dalton AB, Collins S, Mun˜ oz E, Razal JM, Ebron VH, Ferraris JP, et al. Super-tough carbon-nanotube fibers. Nature 2003;423:703. [5] Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004;305:1447–50. [6] Miaudet P, Badaire S, Maugey M, Derre´ A, Pichot V, Launois P, et al. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett 2005;5(11):2212–5. [7] Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube fiber yarns by downsizing an ancient technology. Science 2004;306:1358–61. [8] Zhang XB, Jiang KL, Feng C, Liu P, Zhang LN, Kong J, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 2006;18:1505–10. [9] Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 2007;19:4198–201. [10] Zhang SJ, Koziol K, Kinloch IA, Windle AH. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 2008;4(8):1217–22. [11] Gao Y, Li JZ, Liu LQ, Ma WJ, Zhou WY, Xie SS, et al. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv Funct Mater 2010;20:3797–803. [12] Deng F, Lu WB, Zhao HB, Zhu YT, Kim BS, Chou TW. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 2011;49:1752–7. Fig. 8 – Scanning electron micrograph depicting a failed CSF specimen end. 0 2 4 6 8 10 12 14 16 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 σ σ (GPa) ε (%) 0 20 40 60 80 100 R ( Ω) pull-out R Fig. 9 – Electromechanical response to dynamic tension loading for two 3.18 mm gage CSF specimens: pull-out vs. brittle failure. 3880 CARBON 50 (2012) 3876 – 3881
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有