·468* 工程科学学报,第40卷,第4期 (5):95) Steel Res,2003,59(6):679 B]Ennaceur C.Laksimi A,Herve C,et al.Monitoring crack growth [14]Rabiei M,Modarres M.Quantitative methods for structural health in pressure vessel steels by the acoustic emission technique and the management using in situ acoustic emission monitoring.Int Fa- method of potential difference.Int J Press Vessels Pip,2006,83 igue,2013,49:81 (3):197 [15]Gagar D,Foote P,Irving P E.Effects of loading and sample ge- 14]Zhou J.Research on Acoustic Emission Source Location and Prelim- ometry on acoustic emission generation during fatigue crack inary Study on the Crack Propagation [Dissertation].Nanning: growth:Implications for structural health monitoring.Int J Fa- Guangxi University,2006 igue,2015,81:117 (周洁.裂纹声发射源定位研究及发展趋势预估初探[学位论 [16]Keshtgar A,Modarres M.Probabilistic approach for nondestruc- 文].南宁:广西大学,2006) tive detection of fatigue crack initiation and sizing.Int Prognost Han Z Y,Luo H Y,Zhang Y B,et al.Effects of micro-structure Health Manage,2016,7:19 on fatigue crack propagation and acoustic emission behaviors in a [7]Chai M Y,Duan Q,Hou X L,et al.Fracture toughness evalua- micro-alloyed steel.Mater Sci Eng A,2013,559:534 tion of 3161N stainless steel and weld using acoustic emission [6]Li L F,Zhang Z,Shen G T.Influence of grain size on fatigue technique.ISIJ Int,2016,56(5):875 crack propagation and acoustic emission features in commercial-pu- [18]Zhang Y B,Luo H Y,Li J R,et al.An integrated processing rity zirconium.Mater Sci Eng A,2015,636:35 method for fatigue damage identification in a steel structure based ]Moorthy V,Jayakumar T,Raj B.Influence of microstructure on on acoustic emission signals.J Mater Eng Perform,2017,26 acoustic emission behavior during stage 2 fatigue crack growth in (4):1784 solution annealed,thermally aged and weld specimens of AlSl type [19]Li G H,Liu Z Y.Inspection of metal high frequency cyelic fa- 316 stainless steel.Mater Sci Eng A,1996,212(2):273 tigue behavior utilizing acoustic emission technique.China Mech [8]Chai M Y,Zhang J,Zhang Z X,et al.Acoustic emission studies Eng,2004,15(13):1205 for characterization of fatigue crack growth in 316LN stainless steel (李光海,刘正义.基于声发射技术的金属高频疲劳监测.中 and welds.Appl Acoust,2017,126:101 国机械工程,2004,15(13):1205) 9]Chai M Y,Zhang Z X,Song Y,et al.Assessment of fatigue crack 20] Kahirdeh A,Sauerbrunn C,Yun H,et al.A parametric ap- growth in 316LN stainless steel based on acoustic emission entro proach to acoustie entropy estimation for assessment of fatigue py.Int J Fatigue,2018,109:145 damage.Int J Fatigue,2017,100:229 [10]Strantza M,Hemelrijck D V,Guillaume P,et al.Acoustic emis- 1]Wang Z J,Hu G H,Yu H R,et al.Fatigue crack growth of sion monitoring of crack propagation in additively manufactured Q345B using acoustic emission technique.I Nanchang Hangkong and conventional titanium components.Mech Res Commun, Univ Nat Sci,2016,30(4):99 2017,84:8 (王振京,胡国华,喻海荣,等.基于声发射技术的0345B疲 [1]Morton T M,Smith S,Harrington R M.Effect of loading varia- 劳裂纹扩展研究.南昌航空大学学报(自然科学版),2016, bles on the acoustic emissions of fatiguecrack growth.Exp Mech, 30(4):99) 1974,14(5):208 22]Paris P,Erdogan F.A critical analysis of crack propagation [12]Roberts T M,Talebzadeh M.Acoustic emission monitoring of fa- laws.J Basic Eng,1963,85(4):528 tigue crack propagation.J Constr Steel Res,2003,59(6):695 23]Yu J G,Ziehl P,Zarate B,et al.Prediction of fatigue crack [13]Roberts T M,Talebzadeh M.Fatigue life prediction based on growth in steel bridge components using acoustic emission. crack propagation and acoustic emission count rates.I Constr Constr Steel Res,2011,67(8):1254工程科学学报,第 40 卷,第 4 期 ( 5) : 95) [3] Ennaceur C,Laksimi A,Hervé C,et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference. Int J Press Vessels Pip,2006,83 ( 3) : 197 [4] Zhou J. Research on Acoustic Emission Source Location and Preliminary Study on the Crack Propagation [Dissertation]. Nanning: Guangxi University,2006 ( 周洁. 裂纹声发射源定位研究及发展趋势预估初探[学位论 文]. 南宁: 广西大学,2006) [5] Han Z Y,Luo H Y,Zhang Y B,et al. Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel. Mater Sci Eng A,2013,559: 534 [6] Li L F,Zhang Z,Shen G T. Influence of grain size on fatigue crack propagation and acoustic emission features in commercial-purity zirconium. Mater Sci Eng A,2015,636: 35 [7] Moorthy V,Jayakumar T,Raj B. Influence of microstructure on acoustic emission behavior during stage 2 fatigue crack growth in solution annealed,thermally aged and weld specimens of AISI type 316 stainless steel. Mater Sci Eng A,1996,212( 2) : 273 [8] Chai M Y,Zhang J,Zhang Z X,et al. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds. Appl Acoust,2017,126: 101 [9] Chai M Y,Zhang Z X,Song Y,et al. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy. Int J Fatigue,2018,109: 145 [10] Strantza M,Hemelrijck D V,Guillaume P,et al. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components. Mech Res Commun, 2017,84: 8 [11] Morton T M,Smith S,Harrington R M. Effect of loading variables on the acoustic emissions of fatigue-crack growth. Exp Mech, 1974,14( 5) : 208 [12] Roberts T M,Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation. J Constr Steel Res,2003,59( 6) : 695 [13] Roberts T M,Talebzadeh M. Fatigue life prediction based on crack propagation and acoustic emission count rates. J Constr Steel Res,2003,59( 6) : 679 [14] Rabiei M,Modarres M. Quantitative methods for structural health management using in situ acoustic emission monitoring. Int J Fatigue,2013,49: 81 [15] Gagar D,Foote P,Irving P E. Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: Implications for structural health monitoring. Int J Fatigue,2015,81: 117 [16] Keshtgar A,Modarres M. Probabilistic approach for nondestructive detection of fatigue crack initiation and sizing. Int J Prognost Health Manage,2016,7: 19 [17] Chai M Y,Duan Q,Hou X L,et al. Fracture toughness evaluation of 316LN stainless steel and weld using acoustic emission technique. ISIJ Int,2016,56( 5) : 875 [18] Zhang Y B,Luo H Y,Li J R,et al. An integrated processing method for fatigue damage identification in a steel structure based on acoustic emission signals. J Mater Eng Perform,2017,26 ( 4) : 1784 [19] Li G H,Liu Z Y. Inspection of metal high frequency cyclic fatigue behavior utilizing acoustic emission technique. China Mech Eng,2004,15( 13) : 1205 ( 李光海,刘正义. 基于声发射技术的金属高频疲劳监测. 中 国机械工程,2004,15( 13) : 1205) [20] Kahirdeh A,Sauerbrunn C,Yun H,et al. A parametric approach to acoustic entropy estimation for assessment of fatigue damage. Int J Fatigue,2017,100: 229 [21] Wang Z J,Hu G H,Yu H R,et al. Fatigue crack growth of Q345B using acoustic emission technique. J Nanchang Hangkong Univ Nat Sci,2016,30( 4) : 99 ( 王振京,胡国华,喻海荣,等. 基于声发射技术的 Q345B 疲 劳裂纹扩展研究. 南昌航空大学学报( 自然科学版) ,2016, 30( 4) : 99) [22] Paris P,Erdogan F. A critical analysis of crack propagation laws. J Basic Eng,1963,85( 4) : 528 [23] Yu J G,Ziehl P,Zrate B,et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission. J Constr Steel Res,2011,67( 8) : 1254 · 864 ·