正在加载图片...
·1164 工程科学学报,第37卷,第9期 映到点蚀电位的变化上并不明显 [8]Mozhi T,Clark W.Nishimoto K.The effect of nitrogen on the sensitization of AlSI 304 stainless steel.Corrosion,1985,41 3结论 (10):555 9]Mudali U K,Baldev R.High Nitrogen Steel and Stainless Steels (1)N质量分数从0.09%增加到0.20%时, Manufacturing:Properties and Applications.Beijing:Chemical In- 316LN的平均晶粒尺寸从33.7减小至21.7um,高的 dustry Press,2006 N含量可以明显减小316LN在固溶处理过程中的晶粒 (曼德里UK,贝德威R.高氮钢和不锈钢:生产、性能与应 长大趋势:N质量分数每增加0.01%,316LN的抗拉强 用.北京:化学工业出版社,2006) 度增大8.33MPa,屈服强度增大4.56MPa.晶粒尺寸 [10]Dayal R K,Parvathavarthini N,Raj B.Influence of metallurgi- 的细化对316LN强度的影响远小于N含量对316LN cal variables on sensitisation kinetics in austenitic stainless steels.Int Mater Rev,2005,50(3):129 强度的影响,N含量对316LN的强化作用主要是由固 [11]Rajasekhar K,Harendranath C S,Raman R,et al.Microstruc- 溶强化造成的. tural evolution during solidification of austenitic stainless steel (2)Cr和Mo含量对316LN的抗拉强度和屈服强 weld metals:a color metallographic and electron microprobe anal- 度等力学性能影响微弱,而N元素的影响可以忽略. ysis study.Mater Charact,1997,38(2):53 Mo含量增加可起到微弱细化316LN晶粒尺寸的作 [12]American Society for Testing and Materials.G150-3 Code for 用,当Ni含量较低时,使得铸态组织中先析出8铁素 Standard Test Method for Electrochemical Critical Pitting Temper- 体相,则316LN在热加工后的晶粒会相对较大. ature Testing of Stainless Steels.Pennsyvania:ASTM Internation- al,1999 (3)所有成分的316LN试样均存在明显的钝化 [13]Gavriljuk V G,Bem H.High Nitrogen Steels.Berlin:Springer, 区,Mo含量的增加可明显改善316LN的耐点蚀能力, 1999 Cr元素的增加可轻微改善316LN的抗点蚀能力,Ni元 [14]Dyson D J,Holmes B.Effect of alloying additions on the lattice 素对316LN的耐点蚀性能影响不大,但可增大其钝态 parameter of austenite.J Iron Steel Inst,1970,208:469 的腐蚀速度,不利于钝化膜的稳定.随着N含量的升 [15]Wan R C,Sun F,Zhang L T,et al.Effect of Mo on the high- 高,316LN的耐点蚀性能改善,但是当N质量分数达到 temperature yield strength of fire-resistant steels.J Unir Sci Tech- nol Beijing,2013,35(3):325 0.20%时,其耐点蚀性能又开始变差.316LN的晶粒 (万荣春,孙峰,张澜庭,等.Mo对耐火钢高温屈服强度的影 越大,其发生点蚀的倾向越小. 响,北京科技大学学报,2013,35(3):325) 06 Hammar O,Svensson U.Solidification and Casting of Metals 参考文献 London:The Metals Society,1979 [17]Mataya M C,Nilsson E R,Brown E L,et al.Hot working and [Simmons J W.Overview:high-nitrogen alloying of stainless recrystallization of as-cast 316L.Metall Mater Trans A,2003,34 steels.Mater Sci Eng A,1996,207(2)159 (8):1683 Babu M N,Dutt B S,Venugopal S,Venugopal S,et al.Fatigue 8]Olefjord I.The passive state of stainless steels.Mater Sci Eng, crack growth behavior of 316LN stainless steel with different nitro- 1980,42:161 gen contents.Procedia Eng,2013,55:716 19] Olefjord I,Wegrelius L.Surface analysis of passive state.Corros B3]Zhang X Z,Zhang YS,Li Y J,et al.Cracking initiation mecha- Sc,1990,31:89 nism of 316LN stainless steel in the process of the hot deformation. 220]Olefjord I,Brox B,Jelvestam U.Surface composition of stainless Mater Sci Eng A.2013,559:301 steels during anodic dissolution and passivation studied by ES- 4]Zhang W H,Sun S H,Zhao D L.et al.Hot deformation behavior CA.J Electrochem Soc,1985,132:2854 of an Nb-containing 316LN stainless steel.Mater Des,2011,32 21] Olefjord I,Wegrelius L.The influence of nitrogen on the passi- (8):4173 vation of stainless steels.Corros Sci,1996,38(7):1203 5]Vogt J B.Foct J,Regnard C.Low-temperature fatigue of 316L. 22]Vanini A S,Audouard J P,Marcus P.The role of nitrogen in the and 316LN austenitic stainless steels.Metall Trans A,1991,22: passivity of austenitic stainless steels.Corros Sci,1994,36 2385 (11):1825 6 Werner E.Solid solution and grain size hardening of nitrogenal- D3]Luo Q,Chen Y,Liu S W.The studies on the corrosion behav- loyed austenitic steels.Mater Sci Eng A,1998,101:93 iors of 316NG and 304NG nitrogen-ontaining stainless steels Roncery LM,Weber S,Theisen W.Nucleation and precipitation made in China.Procedia Eng,2012,27:1560 kinetics of M2s C6 and M2 N in an Fe-Mn-Cr-C-N austenitic ma- 24]Olsson C O A.The influence of nitrogen and molybdenum on trix and their relationship with the sensitization phenomenon.Acta passive films formed on the austenoferritic stainless steel 2205 Mater,2011,59(16):6275 studied by AES and XPS.Corros Sci,1995,37(3):467工程科学学报,第 37 卷,第 9 期 映到点蚀电位的变化上并不明显. 3 结论 ( 1 ) N 质 量 分 数 从 0. 09% 增 加 到 0. 20% 时, 316LN 的平均晶粒尺寸从 33. 7 减小至 21. 7 μm,高的 N 含量可以明显减小316LN 在固溶处理过程中的晶粒 长大趋势; N 质量分数每增加 0. 01% ,316LN 的抗拉强 度增大 8. 33 MPa,屈服强度增大 4. 56 MPa. 晶粒尺寸 的细化对 316LN 强度的影响远小于 N 含量对 316LN 强度的影响,N 含量对 316LN 的强化作用主要是由固 溶强化造成的. ( 2) Cr 和 Mo 含量对 316LN 的抗拉强度和屈服强 度等力学性能影响微弱,而 Ni 元素的影响可以忽略. Mo 含量增加可起到微弱细化 316LN 晶粒尺寸的作 用,当 Ni 含量较低时,使得铸态组织中先析出 δ 铁素 体相,则 316LN 在热加工后的晶粒会相对较大. ( 3) 所有成分的 316LN 试样均存在明显的钝化 区,Mo 含量的增加可明显改善 316LN 的耐点蚀能力, Cr 元素的增加可轻微改善 316LN 的抗点蚀能力,Ni 元 素对 316LN 的耐点蚀性能影响不大,但可增大其钝态 的腐蚀速度,不利于钝化膜的稳定. 随着 N 含量的升 高,316LN 的耐点蚀性能改善,但是当 N 质量分数达到 0. 20% 时,其耐点蚀性能又开始变差. 316LN 的晶粒 越大,其发生点蚀的倾向越小. 参 考 文 献 [1] Simmons J W. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng A,1996,207( 2) : 159 [2] Babu M N,Dutt B S,Venugopal S,Venugopal S,et al. Fatigue crack growth behavior of 316LN stainless steel with different nitro￾gen contents. Procedia Eng,2013,55: 716 [3] Zhang X Z,Zhang Y S,Li Y J,et al. Cracking initiation mecha￾nism of 316LN stainless steel in the process of the hot deformation. Mater Sci Eng A,2013,559: 301 [4] Zhang W H,Sun S H,Zhao D L,et al. Hot deformation behavior of an Nb-containing 316LN stainless steel. Mater Des,2011,32 ( 8) : 4173 [5] Vogt J B,Foct J,Regnard C. Low-temperature fatigue of 316L and 316LN austenitic stainless steels. Metall Trans A,1991,22: 2385 [6] Werner E. Solid solution and grain size hardening of nitrogen-al￾loyed austenitic steels. Mater Sci Eng A,1998,101: 93 [7] Roncery L M,Weber S,Theisen W. Nucleation and precipitation kinetics of M23C6 and M2N in an Fe--Mn--Cr--C--N austenitic ma￾trix and their relationship with the sensitization phenomenon. Acta Mater,2011,59( 16) : 6275 [8] Mozhi T,Clark W,Nishimoto K. The effect of nitrogen on the sensitization of AISI 304 stainless steel. Corrosion,1985,41 ( 10) : 555 [9] Mudali U K,Baldev R. High Nitrogen Steel and Stainless Steels Manufacturing: Properties and Applications. Beijing: Chemical In￾dustry Press,2006 ( 曼德里 U K,贝德威 R. 高氮钢和不锈钢: 生产、性能与应 用. 北京: 化学工业出版社,2006) [10] Dayal R K,Parvathavarthini N,Raj B. Influence of metallurgi￾cal variables on sensitisation kinetics in austenitic stainless steels. Int Mater Rev,2005,50( 3) : 129 [11] Rajasekhar K,Harendranath C S,Raman R,et al. Microstruc￾tural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe anal￾ysis study. Mater Charact,1997,38( 2) : 53 [12] American Society for Testing and Materials. G150-13 Code for Standard Test Method for Electrochemical Critical Pitting Temper￾ature Testing of Stainless Steels. Pennsyvania: ASTM Internation￾al,1999 [13] Gavriljuk V G,Bern H. High Nitrogen Steels. Berlin: Springer, 1999 [14] Dyson D J,Holmes B. Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Inst,1970,208: 469 [15] Wan R C,Sun F,Zhang L T,et al. Effect of Mo on the high￾temperature yield strength of fire-resistant steels. J Univ Sci Tech￾nol Beijing,2013,35( 3) : 325 ( 万荣春,孙峰,张澜庭,等. Mo 对耐火钢高温屈服强度的影 响,北京科技大学学报,2013,35( 3) : 325) [16] Hammar O,Svensson U. Solidification and Casting of Metals. London: The Metals Society,1979 [17] Mataya M C,Nilsson E R,Brown E L,et al. Hot working and recrystallization of as-cast 316L. Metall Mater Trans A,2003,34 ( 8) : 1683 [18] Olefjord I. The passive state of stainless steels. Mater Sci Eng, 1980,42: 161 [19] Olefjord I,Wegrelius L. Surface analysis of passive state. Corros Sci,1990,31: 89 [20] Olefjord I,Brox B,Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ES￾CA. J Electrochem Soc,1985,132: 2854 [21] Olefjord I,Wegrelius L. The influence of nitrogen on the passi￾vation of stainless steels. Corros Sci,1996,38( 7) : 1203 [22] Vanini A S,Audouard J P,Marcus P. The role of nitrogen in the passivity of austenitic stainless steels. Corros Sci,1994,36 ( 11) : 1825 [23] Luo Q,Chen Y,Liu S W. The studies on the corrosion behav￾iors of 316NG and 304NG nitrogen-containing stainless steels made in China. Procedia Eng,2012,27: 1560 [24] Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS. Corros Sci,1995,37( 3) : 467 ·1164·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有