正在加载图片...
·834· 智能系统学报 第17卷 IEEE transactions on industrial informatics,2019,15(5) 2017,648):6775-6784 2879-2891 [18]ZHANG Zhongcai,WU Yuqiang,HUANG Jinming. [8]ZHANG Menghua,ZHANG Yongfeng,OUYANG Differential-flatness-based finite-time anti-swing con- Huimin,et al.Adaptive integral sliding mode control with trol of underactuated crane systems[J].Nonlinear dy- payload sway reduction for 4-DOF tower crane systems[J]. namics,.2017,87(3:1749-1761. Nonlinear dynamics,2020,99(4):2727-2741. [19]WU Xianqing,XU Kexin,LEI Meizhen,et al.Disturb- [9]YANG Tong,SUN Ning,CHEN He,et al.Neural net- ance-compensation-based continuous sliding mode con- work-based adaptive antiswing control of an underactu- trol for overhead cranes with disturbances[J].IEEE ated ship-mounted crane with roll motions and input dead transactions on automation science and engineering, zones[J.IEEE transactions on neural networks and learn- 2020,17(4):2182-2189 ing systems,2020,31(3):901-914. [20]HE Wei,GE S S.Cooperative control of a nonuniform [10]THO H D.KANESHIGE A,TERASHIMA K.Minim- gantry crane with constrained tension[J.Automatica. um-time S-curve commands for vibration-free transport- 2016,66:146-154 ation of an overhead crane with actuator limits[J].Con- [21]ZHANG Menghua,JING Xinjian,ZHU Zaixing.Dis- trol engineering practice,2020,98:104390. turbance employment-based sliding mode control for 4- [11]SMOCZEK J,SZPYTKO J.Particle swarm optimiza- DOF tower crane systems[J].Mechanical systems and tion-based multivariable generalized predictive control signal processing,2021,161:107946. for an overhead crane[J].IEEE/ASME transactions on [22]YE Jiahui,HUANG Jie.Analytical analysis and oscilla- mechatronics,.2017,22(1):258-268. tion control of payload twisting dynamics in a tower [12]WANG Zhenyan,CHEN Zhimei,ZHANG Jinggang.On crane carrying a slender payload[J].Mechanical systems PSO based fuzzy neural network sliding mode control and signal processing,2021,158:107763. for overhead crane[M//Advances in Intelligent and Soft [23]WU T S,KARKOUB M,YU W S,et al.Anti-sway Computing.Heidelberg:Springer Berlin Heidelberg, tracking control of tower cranes with delayed uncer- 2011:563-572 tainty using a robust adaptive fuzzy control[J].Fuzzy [13]YANG Tong,SUN Ning,CHEN He,et al.Observer- sets and systems,2016,290:118-137. based nonlinear control for tower cranes suffering from [24]TUAN L A.LEE S G.Modeling and advanced sliding uncertain friction and actuator constraints with experi- mode controls of crawler cranes considering wire rope mental verification[J].IEEE transactions on industrial elasticity and complicated operations[J].Mechanical electronics,2021,68(7):6192-6204 systems and signal processing,2018,103:250-263. [14]赵潇菲,张井岗.柔性倒立摆的模糊控制算法).智能 [25]RAJA ISMAIL R M T,THAT N D,HA Q P.Modelling 系统学报,2010,5(4):347-352 and robust trajectory following for offshore container ZHAO Xiaofei,ZHANG Jinggang.A fuzzy control crane systems[J].Automation in construction,2015,59: method for flexible-joint inverted pendulums[J].CAAI 179-187. transactions on intelligent systems,2010,5(4):347-352. [26]NGO Q H,HONG K S.Sliding-mode antisway control [15]王晓宇,闫继宏,徐莉红.基于自控测距法的机器人位 of an offshore container crane[J].IEEE/ASME transac- 姿估计[).智能系统学报,2009,4(2):169-174. tions on mechatronics,2012.17(2):201-209. WANG Xiaoyu,YAN Jihong,XU Lihong.Improving [27]UCHIYAMA N.Robust control of rotary crane by par- estimations of a robot's position and attitude with accel- tial-state feedback with integrator[J].Mechatronics, erometer enhanced odometry[J].CAAI transactions on 2009,198):1294-1302 intelligent systems,2009,4(2):169-174. [28]SUN Ning,YANG Tong,CHEN He,et al.Adaptive [16]ZHANG Menghua,MA Xin,RONG Xuewen,et al.A anti-swing and positioning control for 4-DOF rotary partially saturated adaptive learning controller for over- cranes subject to uncertain/unknown parameters with head cranes with payload hoisting/lowering and un- hardware experiments[J].IEEE transactions on systems, known parameters[J].Nonlinear dynamics,2017,89(3): man,and cybernetics:systems,2019,49(7):1309-1321. 1779-1791. [29]WU Yiming,SUN Ning,CHEN He,et al.Adaptive out- [17]CHWA D.Sliding-mode-control-based robust finite- put feedback control for 5-DOF varying-cable-length time antisway tracking control of 3-D overhead tower cranes with cargo mass estimation[J].IEEE trans- cranes[J].IEEE transactions on industrial electronics, actions on industrial informatics,2021,17(4):2453-IEEE transactions on industrial informatics, 2019, 15(5): 2879–2891. ZHANG Menghua, ZHANG Yongfeng, OUYANG Huimin, et al. Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems[J]. Nonlinear dynamics, 2020, 99(4): 2727–2741. [8] YANG Tong, SUN Ning, CHEN He, et al. Neural net￾work-based adaptive antiswing control of an underactu￾ated ship-mounted crane with roll motions and input dead zones[J]. IEEE transactions on neural networks and learn￾ing systems, 2020, 31(3): 901−914. [9] THO H D, KANESHIGE A, TERASHIMA K. Minim￾um-time S-curve commands for vibration-free transport￾ation of an overhead crane with actuator limits[J]. Con￾trol engineering practice, 2020, 98: 104390. [10] SMOCZEK J, SZPYTKO J. Particle swarm optimiza￾tion-based multivariable generalized predictive control for an overhead crane[J]. IEEE/ASME transactions on mechatronics, 2017, 22(1): 258–268. [11] WANG Zhenyan, CHEN Zhimei, ZHANG Jinggang. On PSO based fuzzy neural network sliding mode control for overhead crane[M]//Advances in Intelligent and Soft Computing. Heidelberg: Springer Berlin Heidelberg, 2011: 563−572. [12] YANG Tong, SUN Ning, CHEN He, et al. Observer￾based nonlinear control for tower cranes suffering from uncertain friction and actuator constraints with experi￾mental verification[J]. IEEE transactions on industrial electronics, 2021, 68(7): 6192–6204. [13] 赵潇菲, 张井岗. 柔性倒立摆的模糊控制算法 [J]. 智能 系统学报, 2010, 5(4): 347−352. ZHAO Xiaofei, ZHANG Jinggang. A fuzzy control method for flexible-joint inverted pendulums[J]. CAAI transactions on intelligent systems, 2010, 5(4): 347−352. [14] 王晓宇, 闫继宏, 徐莉红. 基于自控测距法的机器人位 姿估计 [J]. 智能系统学报, 2009, 4(2): 169−174. WANG Xiaoyu, YAN Jihong, XU Lihong. Improving estimations of a robot's position and attitude with accel￾erometer enhanced odometry[J]. CAAI transactions on intelligent systems, 2009, 4(2): 169−174. [15] ZHANG Menghua, MA Xin, RONG Xuewen, et al. A partially saturated adaptive learning controller for over￾head cranes with payload hoisting/lowering and un￾known parameters[J]. Nonlinear dynamics, 2017, 89(3): 1779–1791. [16] CHWA D. Sliding-mode-control-based robust finite￾time antisway tracking control of 3-D overhead cranes[J]. IEEE transactions on industrial electronics, [17] 2017, 64(8): 6775–6784. ZHANG Zhongcai, WU Yuqiang, HUANG Jinming. Differential-flatness-based finite-time anti-swing con￾trol of underactuated crane systems[J]. Nonlinear dy￾namics, 2017, 87(3): 1749–1761. [18] WU Xianqing, XU Kexin, LEI Meizhen, et al. Disturb￾ance-compensation-based continuous sliding mode con￾trol for overhead cranes with disturbances[J]. IEEE transactions on automation science and engineering, 2020, 17(4): 2182–2189. [19] HE Wei, GE S S. Cooperative control of a nonuniform gantry crane with constrained tension[J]. Automatica, 2016, 66: 146–154. [20] ZHANG Menghua, JING Xinjian, ZHU Zaixing. Dis￾turbance employment-based sliding mode control for 4- DOF tower crane systems[J]. Mechanical systems and signal processing, 2021, 161: 107946. [21] YE Jiahui, HUANG Jie. Analytical analysis and oscilla￾tion control of payload twisting dynamics in a tower crane carrying a slender payload[J]. Mechanical systems and signal processing, 2021, 158: 107763. [22] WU T S, KARKOUB M, YU W S, et al. Anti-sway tracking control of tower cranes with delayed uncer￾tainty using a robust adaptive fuzzy control[J]. Fuzzy sets and systems, 2016, 290: 118–137. [23] TUAN L A, LEE S G. Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations[J]. Mechanical systems and signal processing, 2018, 103: 250–263. [24] RAJA ISMAIL R M T, THAT N D, HA Q P. Modelling and robust trajectory following for offshore container crane systems[J]. Automation in construction, 2015, 59: 179–187. [25] NGO Q H, HONG K S. Sliding-mode antisway control of an offshore container crane[J]. IEEE/ASME transac￾tions on mechatronics, 2012, 17(2): 201–209. [26] UCHIYAMA N. Robust control of rotary crane by par￾tial-state feedback with integrator[J]. Mechatronics, 2009, 19(8): 1294–1302. [27] SUN Ning, YANG Tong, CHEN He, et al. Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 49(7): 1309–1321. [28] WU Yiming, SUN Ning, CHEN He, et al. Adaptive out￾put feedback control for 5-DOF varying-cable-length tower cranes with cargo mass estimation[J]. IEEE trans￾actions on industrial informatics, 2021, 17(4): 2453– [29] ·834· 智 能 系 统 学 报 第 17 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有