正在加载图片...
任浩岩等:Cu-(Fe-C)合金中Fe-C相的固态转变对其摩擦磨损行为及机理的影响 ·1199 参考文献 (张敏,王刚,张立胜,等40Cr钢表面激光熔覆Fe、Ni基涂层组织 性能研究.稀有金属,http:/ns.cnki.net/cms/detail11.2111.TF. [1]Ren J,Cui G J,Lu Z X.Experimental study on tribological 20191211.0955.001.html) characteristics of friction plate for belt conveyor.Sci Technol Eng, [13]Xiong X,Chen J,Yao PP,et al.Friction and wear behaviors and 2017,17(30):223 mechanisms of Fe and SiOz in Cu-based P/M friction materials. (任剑,崔功军,鲁张祥.Cu-F基摩擦片摩擦磨损性能的实验研 究.科学技术与工程,2017,17(30):223) Wear,2007,262(9-10:1182 [2]Li Y W,Xiao L R,Zhang W,et al.Microstructure and mechanical [14]Liu B W,Fan Y,Zhang J S,et al.Effect of SiOz and SiC on properties of aluminum bronze with different Mn contents.ChinJ properties of Cu-Fe matrix sintered friction materials.ChinJ Rare Met,2017,41(9):985 Nonferrous Met,.2001,11(增f刊1):110 (李雨蔚,肖来荣,章玮,等.不同M含量的铝青铜合金组织与性 (刘伯威,樊毅,张金生,等.SiO,和SiC对C-F基烧结摩擦材 能.稀有金属,2017,41(9):985) 料性能的影响.中国有色金属学报,2001,11(增刊1):110) [3]Jiang Y L,Zhu H G.Research status of friction and wear [15]Guo W,Shen Y,Lu D P,et al.Effect of heat treatment on properties of copper matrix composites.Mater Rep,2014,28(3): microstructure and properties of Cu-14Fe-C alloy.Hear Trear 3 MeL,2018,43(4):88 (蒋娅琳,朱和国.铜基复合材料的摩擦磨损性能研究现状.材 (郭炜,谌昀,陆德平,等.热处理对Cu-14Fe-C合金组织和性能 料导报,2014,28(3):33) 的影响.金属热处理,201843(4):88) [4]Osterle W,Prietzel C,KloB H,et al.On the role of copper in brake [16]Guo M X,Wang F,Yi L.The microstructure controlling and friction materials.Tribol Int,2010,43(12):2317 deformation behaviors of Cu-Fe-C alloy prepared by rapid [5]He B.WangC.LeiT,et al.Study on properties of gradient layers solidification.Mater Sci Eng A,2016,657:197 of laser deposited TC4/TC11 gradient composite structure.ChinJ [17]Guo M X,Zhu J,Yi L,et al.Effects of precipitation and strain- Rare Met..2014.38(6):1 induced martensitic transformation of Fe -C phases on the (何波,王晨,雷涛,等.激光沉积TC4TC11梯度复合结构各梯度 mechanical properties of Cu-Fe-C alloy.Mater Sci Eng,017, 层性能研究.稀有金属,2014,38(6):1) 697:119 [6]Wei Y,Wang W,Zhang Y N,et al.Synergistic enhancement of [18]Cui Z Q,Qin Y C.Metallology and Heat Treamment.2nd Ed. bio-tribological properties of Til3Nb13Zr alloy by surface shot Beijing:China Machine Press,2011 peening and Fe*implantation.Chin J Rare Mer,2020,44(1):48 (崔忠圻,覃耀春金属学与热处理.2版.北京:机械工业出版社, (魏燕,王伟,张雁南,等,表面喷丸与Fε注人协同增强 2011) Ti13Nb13Zr合金的生物摩擦学性能.稀有金属,2020,44(1): [19]Shi B,Song H W,Wang X F,et al.Nanoindentation 48) characterization of low carbon matensitic steels//Proceedings of [7]He D H,Manory R.A novel electrical contact material with New Progress on Materials Science and Engineering.Beijing. improved self-lubrication for railway current collectors.Wear, 2004:1300 2001,249(7):626 (史弼,宋洪伟,王秀芳,等.低碳板条马氏体钢的纳米压痕表征 [8]Xiao Y L,Zhang Z Y,Yao P P,et al.Mechanical and tribological /材料科学与工程新进展论文集.北京,2004:1300) behaviors of copper metal matrix composites for brake pads used [20]Zhang J S,Liu X J,Cui H,et al.Mechanical properties around in high-speed trains.Tribol Int,2018,119:585 reinforce particles in metal matrix composites characterized by [9] Moustafa S F,El-Badry S A,Sanad A M,et al.Friction and wear nanoindentation technique.Acta Metall Sinica,1997,33(5):548 of copper-graphite composites made with Cu-coated and uncoated (张济山,刘兴江,崔华,等.金属基复合材料相界面区力学性能 graphite powders.Wear,2002,253(7-8):699 显微力学探针分析.金属学报,1997,33(5):548) [10]SenouciA,Frene J,Zaidi H.Wear mechanism in graphite-copper [21]He J A.Wang Y W.Material Wear and Wear Resistance electrical sliding contact.Wear,1999,225-229:949 Materials.Shenyang:Northeastern University Press,2001 [11]Zhou H B,Yao PP,Xiao Y L,et al.Friction and wear maps of (何奖爱,王玉玮.材料磨损与耐磨材料.沈阳:东北大学出版社, copper metal matrix composites with different iron volume 2001) content.Tribol Int,2019,132:199 [22]Huang XX,Shen Y H,Jin S Y,et al.High-temperature wear [12]Zhang M,Wang G,Zhang L S,et al.Microstructure and properties performance and mechanism of NM400/NM500 mining machinery of laser cladding Fe,Ni-based coatings on 40Cr surface.Chin J steels.Chin J Eng,2019,41(6):797 Rare Met,http://kns.cnki.net/kems/detail/11.2111.TF.20191211. (黄夏旭,申炎华,靳舜尧,等.NM400/NM500级矿1山机械用钢 0955.001html 的高温磨损性能及机理.工程科学学报,2019,41(6):797)参    考    文    献 Ren  J,  Cui  G  J,  Lu  Z  X.  Experimental  study  on  tribological characteristics of friction plate for belt conveyor. Sci Technol Eng, 2017, 17(30): 223 (任剑, 崔功军, 鲁张祥. Cu–Fe基摩擦片摩擦磨损性能的实验研 究. 科学技术与工程, 2017, 17(30):223) [1] Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. Chin J Rare Met, 2017, 41(9): 985 (李雨蔚, 肖来荣, 章玮, 等. 不同Mn含量的铝青铜合金组织与性 能. 稀有金属, 2017, 41(9):985) [2] Jiang  Y  L,  Zhu  H  G.  Research  status  of  friction  and  wear properties of copper matrix composites. Mater Rep, 2014, 28(3): 33 (蒋娅琳, 朱和国. 铜基复合材料的摩擦磨损性能研究现状. 材 料导报, 2014, 28(3):33) [3] Österle W, Prietzel C, Kloß H, et al. On the role of copper in brake friction materials. Tribol Int, 2010, 43(12): 2317 [4] He B, Wang C, Lei T, et al. Study on properties of gradient layers of laser deposited TC4/TC11 gradient composite structure. Chin J Rare Met, 2014, 38(6): 1 (何波, 王晨, 雷涛, 等. 激光沉积TC4/TC11梯度复合结构各梯度 层性能研究. 稀有金属, 2014, 38(6):1) [5] Wei  Y,  Wang  W,  Zhang  Y  N,  et  al.  Synergistic  enhancement  of bio-tribological  properties  of  Ti13Nb13Zr  alloy  by  surface  shot peening and Fe+ implantation. Chin J Rare Met, 2020, 44(1): 48 ( 魏 燕 ,  王 伟 ,  张 雁 南 ,  等 .  表 面 喷 丸 与 Fe+注 入 协 同 增 强 Ti13Nb13Zr合金的生物摩擦学性能. 稀有金属, 2020, 44(1): 48) [6] He  D  H,  Manory  R.  A  novel  electrical  contact  material  with improved  self-lubrication  for  railway  current  collectors. Wear, 2001, 249(7): 626 [7] Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int, 2018, 119: 585 [8] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, 253(7-8): 699 [9] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact. Wear, 1999, 225-229: 949 [10] Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper  metal  matrix  composites  with  different  iron  volume content. Tribol Int, 2019, 132: 199 [11] Zhang M, Wang G, Zhang L S, et al. Microstructure and properties of  laser  cladding  Fe,  Ni-based  coatings  on  40Cr  surface.  Chin  J Rare  Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211. 0955.001.html [12] (张敏, 王刚, 张立胜, 等.40Cr钢表面激光熔覆Fe、Ni基涂层组织 性能研究.稀有金属, http://kns.cnki.net/kcms/detail/11.2111.TF. 20191211.0955.001.html) Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors and mechanisms  of  Fe  and  SiO2 in  Cu-based  P/M  friction  materials. Wear, 2007, 262(9-10): 1182 [13] Liu  B  W,  Fan  Y,  Zhang  J  S,  et  al.  Effect  of  SiO2 and  SiC  on properties  of  Cu –Fe  matrix  sintered  friction  materials. Chin J Nonferrous Met, 2001, 11(增刊1): 110 (刘伯威, 樊毅, 张金生, 等. SiO2和SiC 对 Cu–Fe 基烧结摩擦材 料性能的影响. 中国有色金属学报, 2001, 11(增刊1):110) [14] Guo  W,  Shen  Y,  Lu  D  P,  et  al.  Effect  of  heat  treatment  on microstructure  and  properties  of  Cu –14Fe –C  alloy. Heat Treat Met, 2018, 43(4): 88 (郭炜, 谌昀, 陆德平, 等. 热处理对Cu–14Fe–C合金组织和性能 的影响. 金属热处理, 2018, 43(4):88) [15] Guo  M  X,  Wang  F,  Yi  L.  The  microstructure  controlling  and deformation  behaviors  of  Cu –Fe –C  alloy  prepared  by  rapid solidification. Mater Sci Eng A, 2016, 657: 197 [16] Guo M X, Zhu J, Yi L, et al. Effects of precipitation and strain￾induced  martensitic  transformation  of  Fe –C  phases  on  the mechanical properties of Cu–Fe–C alloy. Mater Sci Eng A, 2017, 697: 119 [17] Cui  Z  Q,  Qin  Y  C. Metallology and Heat Treatment.  2nd  Ed. Beijing: China Machine Press, 2011 (崔忠圻, 覃耀春. 金属学与热处理. 2版. 北京: 机械工业出版社, 2011) [18] Shi  B,  Song  H  W,  Wang  X  F,  et  al.  Nanoindentation characterization  of  low  carbon  matensitic  steels//Proceedings of New Progress on Materials Science and Engineering.  Beijing, 2004: 1300 (史弼, 宋洪伟, 王秀芳, 等. 低碳板条马氏体钢的纳米压痕表征 //材料科学与工程新进展论文集. 北京, 2004: 1300) [19] Zhang  J  S,  Liu  X  J,  Cui  H,  et  al.  Mechanical  properties  around reinforce  particles  in  metal  matrix  composites  characterized  by nanoindentation technique. Acta Metall Sinica, 1997, 33(5): 548 (张济山, 刘兴江, 崔华, 等. 金属基复合材料相界面区力学性能 显微力学探针分析. 金属学报, 1997, 33(5):548) [20] He  J  A,  Wang  Y  W. Material Wear and Wear Resistance Materials. Shenyang: Northeastern University Press, 2001 (何奖爱, 王玉玮. 材料磨损与耐磨材料. 沈阳: 东北大学出版社, 2001) [21] Huang  X  X,  Shen  Y  H,  Jin  S  Y,  et  al.  High-temperature  wear performance and mechanism of NM400/NM500 mining machinery steels. Chin J Eng, 2019, 41(6): 797 (黄夏旭, 申炎华, 靳舜尧, 等. NM400/NM500级矿山机械用钢 的高温磨损性能及机理. 工程科学学报, 2019, 41(6):797) [22] 任浩岩等: Cu–(Fe–C) 合金中 Fe–C 相的固态转变对其摩擦磨损行为及机理的影响 · 1199 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有