正在加载图片...
solutions.Catal Sci Technol.2019.9(22):6379 [36]Hoseini S,et al.Application of plasma technology in the removal of volatile organic compounds(BTX)using manganese oxide nano-catalysts synthesized from spent batteries.J Clean Prod,2019.232:1134 [37]Tian,M.,et al.,Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso- macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction.Appl Catal B-Emviron,2019.259:118018 [38]Veerapandian,S.K.P,et al.Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air.J Hazard Mater,2019.379:120781. [39]Einaga H,et al.Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone.Catal Tbdy,2015.242:287 [40]Wang Y,et al.Structure dependence of Nb205-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb205-X.Appl Catal B-Emviron,2019.244:438 [41]Joung H,et al.Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles.ApplfSei,2014.290:267 [42]Chi-Sheng Wu,J.and T.Chang.VOC deep oxidation over Pt catalysts using hydrophobic supports.Catal Today,1998 441-4):111 [43]Wu J,et al.Low-temperature complete oxidation of BTX on Pt/activated carbon cataly Catal Today,2000.63(2) 419 [44]Lin F,Li X,Zhang Z,et al.Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions.Crit Rev Eny Sci Tec,2020:1 [45]Zouhair EA,Satu O,Satu P et al.Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts.Chem Eng,2017,313:1010 [46]Rao Z,et al.Photocatalytic degradation of gaseous VQCs over Tm3+-TiO2:Revealing the activity enhancement mechanism and different reaction paths.Chem Eng,020.(125078. [47]Li J,Zhao P Liu S.SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation.Appl Catal A-Gen,2014,482363 [48]Busca G,Daturi M,Finocchio E,et al.Transition metal mixed oxides as combustion catalysts:preparation, characterization and activity mechanisms.Catal Today,1997,33(1-3):239 [49]Dissanayake S,et al.Mesoporous Co304catalysts for VOC elimination:Oxidation of 2-propanol.Appl Catal 4-Gen, 2020.590:117366 [50]LOJEWSKA J,et al.Cobalt catalyst deposited on metallic microstructures for VOC combustion:Preparation by non- equilibrium plasma.Catal Commim:2008.10(2):142 [51]Li,Y.and W.Shen,Morphology-dependent nanocatalysts:Rod-shaped oxides.Chem Soc Rev,2014.43(5):1543 [52]Skarman,B,et al.Carbon Monoxide Oxidation on Nanostructured CuO/CeO Composite Particles Characterized by HREM,XPSXAS,d High-Energy Diffraction.Catl002.1(1):119 [53]Zimmer P.A TSchope and R Birringer,Temperature-Programmed Reaction Spectroscopy of Ceria-and Cu/Ceria- Supported Oxide Catalyst.J Catal,2002.205(2):339 [54]Li H,Lu G,Dai Q,et al.Hierarchical Organization and Catalytic Activity of High-Surface-Area Mesoporous Ceria Microspheres Prepared Via Hydrothermal Routes.Asc App/Mater Inter,2010,2.3:838 [55]Wang.Q,K Yeung and M Banares.Ceria and its related materials for VOC catalytic combustion:A review.Catal Today.2019. [56]Sobhan R,Ali R.A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds.Tetrahedron, 2020.76(36):131382 [57]Li J,Steven S,Feng B.Charaeterization of partieulate-bound polyeyelie-aromatie-compounds(PACs)and their oxidations in heavy poHluted atmosphere:A ease study in urban Beijing,China during haze events.Sei Tofa/Emiron: 20H9660:1392林理量程勇曹礼明,等深圳皇氧污染日的V0Cs组成与来源特征中国环境科学:1-92021solutions. Catal Sci Technol, 2019. 9(22): 6379 [36] Hoseini S, et al. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J Clean Prod, 2019. 232: 1134 [37] Tian, M., et al., Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso￾macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl Catal B-Environ, 2019. 259: 118018 [38] Veerapandian, S.K.P, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. J Hazard Mater, 2019. 379: 120781. [39] Einaga H, et al. Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catal Today, 2015. 242: 287 [40] Wang Y, et al. Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Appl Catal B-Environ, 2019. 244: 438 [41] Joung H, et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci, 2014. 290: 267 [42] Chi-Sheng Wu, J. and T. Chang. VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today, 1998. 44(1-4): 111 [43] Wu J, et al. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today, 2000. 63(2): 419 [44] Lin F, Li X, Zhang Z, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit Rev Env Sci Tec, 2020: 1 [45] Zouhair EA, Satu O, Satu P, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chem Eng J, 2017, 313: 1010 [46] Rao Z, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths. Chem Eng J, 2020. 395(1): 125078. [47] Li J, Zhao P, Liu S. SnOx–MnOx–TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation. Appl Catal A-Gen, 2014, 482: 363 [48] Busca G, Daturi M, Finocchio E, et al. Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catal Today, 1997, 33(1-3): 239 [49] Dissanayake S, et al. Mesoporous Co3O4 catalysts for VOC elimination: Oxidation of 2-propanol. Appl Catal A-Gen, 2020. 590: 117366 [50] LOJEWSKA J, et al. Cobalt catalyst deposited on metallic microstructures for VOC combustion: Preparation by non￾equilibrium plasma. Catal Commun, 2008. 10(2): 142 [51] Li, Y. and W. Shen, Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem Soc Rev, 2014. 43(5): 1543 [52] Skarman, B, et al, Carbon Monoxide Oxidation on Nanostructured CuO/CeO Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. J Catal, 2002. 211(1): 119 [53] Zimmer P, A. Tschöpe and R Birringer, Temperature-Programmed Reaction Spectroscopy of Ceria- and Cu/Ceria￾Supported Oxide Catalyst. J Catal, 2002. 205(2): 339 [54] Li H, Lu G, Dai Q, et al. Hierarchical Organization and Catalytic Activity of High-Surface-Area Mesoporous Ceria Microspheres Prepared Via Hydrothermal Routes. Asc Appl Mater Inter, 2010, 2.3: 838 [55] Wang, Q, K Yeung and M Bañares. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today, 2019. [56] Sobhan R, Ali R. A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds. Tetrahedron, 2020. 76(36): 131382 [57] Li J, Steven S, Feng B. Characterization of particulate-bound polycyclic aromatic compounds (PACs) and their oxidations in heavy polluted atmosphere: A case study in urban Beijing, China during haze events. Sci Total Environ. 2019, 660: 1392 林理量, 程勇, 曹礼明, 等. 深圳臭氧污染日的 VOCs 组成与来源特征. 中国环境科学: 1-9 [2021- 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有