NATURE MATERIALS DOL:10.1038/NMAT4170 PROGRESS ARTICLE Y H (2014 46.Chen.. in lith 47. 9 (20 is and 2012 film for a 247(2014 80 . 49 Ding.I.et al.Carb 50.Hong.S.Y.ct al Charg 51 82 ene for high-rat t5,3410(201 Wu,X.. p V.et al. oad .T-G (2013 going challeng 86 8pn 04 87 ng.Y.Zhamu.A.l 85-85420 al capacitors.Nature Mater 89. Graphen hen,I.LL C Shi,G per 92. 93 te.LF ode 6 mical energy 9 AaI38.9-00201到 raphene or graphene 66 12.20-20701 48242014 1520444-204 67 itv:Li-air versu 99 28,1390 .Yhgh-energyo <o i.H-D.Ki ter.C 0 Wilcke.W Lith Acknowledgement cial support o Bundesm Lett.1,21 nproved high isiting prof ship posst thor contributions 74. Additional information m/reprint 76 NATURE MATERIALS LADVANCE ONLINE PUBLICATIONIWWWDabNATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials 9 45. Ai, W. et al. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26, 6186–6192 (2014). 46. Chen, J. S. & Lou, X. W. D. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013). 47. Cao, Y. et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012). 48. Wang, Y.-X., Chou, S.-L., Liu, H.-K. & Dou, S.-X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013). 49. Ding, J. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7, 11004–11015 (2013). 50. Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energ. Environ. Sci. 6, 2067–2081 (2013). 51. Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nature Commun. 4, 2922 (2013). 52. Prikhodchenko, P. V. et al. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2, 8431–8437 (2014). 53. Nithya, C. & Gopukumar, S. rGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A 2, 10516–10525 (2014). 54. Qin, G., Zhang, X. & Wang, C. Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance. J. Mater. Chem. A 2, 12449–12458 (2014). 55. Qu, B. et al. Layered SnS2-reduced graphene oxide composite — A highcapacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014). 56. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008). 57. Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). 58. Chen, J., Li, C. & Shi, G. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4, 1244–1253 (2013). 59. Bose, S. et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767–784 (2012). 60. Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). 61. Tsai, W.-Y. et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from –50 to 80°C. Nano Energ. 2, 403–411 (2013). 62. Huang, Y., Liang, J. & Chen, Y. An overview of the applications of graphenebased materials in supercapacitors. Small 8, 1805–1834 (2012). 63. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). 64. Beidaghi, M. & Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energ. Environ. Sci. 7, 867–884 (2014). 65. Xu, B. et al. What is the choice for supercapacitors: Graphene or graphene oxide? Energ. Environ. Sci. 4, 2826–2830 (2011). 66. Han, G. et al. MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 4824 (2014). 67. Lee, J.-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energ. Mater. 1, 34–50 (2011). 68. Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006). 69. Kim, H., Lim, H.-D., Kim, J. & Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2, 33–47 (2014). 70. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). 71. Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. & Scrosati, B. An improved highperformance lithium-air battery. Nature Chem. 4, 579–585 (2012). 72. Jung, H.-G. et al. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium–air batteries. ACS Nano 7, 3532–3539 (2013). 73. Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228–232 (2013). 74. Liu, W., Sun, Q., Yang, Y., Xie, J.-Y. & Fu, Z.-W. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem. Commun. 49, 1951–1953 (2013). 75. Li, Y. et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem. Commun. 49, 11731–11733 (2013). 76. Kucinskis, G., Bajars, G. & Kleperis, J. Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013). 77. Jung, Y. H., Lim, C. H. & Kim, D. K. Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium–ion batteries. J. Mater. Chem. A 1, 11350–11354 (2013). 78. Xu, M. et al. Na3V2O2(PO4)2F/graphene sandwich structure for highperformance cathode of a sodium–ion battery. Phys. Chem. Chem. Phys. 15, 13032–13037 (2013). 79. Zhu, H. et al. Free-standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium–ion battery cathode. ACS Appl. Mater. Interfaces 6, 4242–4247 (2014). 80. Yang, D., Liao, X.-Z., Shen, J., He, Y.-S. & Ma, Z.-F. A flexible and binder-free reduced graphene oxide/Na2/3Ni1/3Mn2/3O2 composite electrode for high-performance sodium ion batteries. J. Mater. Chem. A 2, 6723–6726 (2014). 81. Zu, C. & Manthiram, A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium–sulfur batteries. Adv. Energ. Mater. 3, 1008–1012 (2013). 82. Zhao, M.-Q. et al. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Commun. 5, 3410 (2014). 83. Lu, S., Chen, Y., Wu, X., Wang, Z. & Li, Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2014). 84. Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). 85. Yoo, H. D. et al. Mg rechargeable batteries: An on-going challenge. Energ. Environ. Sci. 6, 2265–2279 (2013). 86. Liu, Y. et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 5, 9562–9567 (2013). 87. Chen, Q. et al. PTMA/graphene as a novel cathode material for rechargeable magnesium batteries. Acta Physico-Chimica Sin. 29, 2295–2299 (2013). 88. Wang, Y., Zhamu, A. & Jang, B. Z. Rechargable magnesium-ion cell having a high-capacity cathode. US Patent 2013/0302697 (2013). 89. Weber, A. Z. et al. Redox flow batteries: A review. J. Appl. Electrochem. 41, 1137–1164 (2011). 90. González, Z. et al. Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. J. Power Sources 241, 349–354 (2013). 91. Han, P. et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energ. Environ. Sci. 4, 4710–4717 (2011). 92. González, Z. et al. Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries. Carbon 50, 828–834 (2012). 93. Flox, C., Skoumal, M., Rubio-Garcia, J., Andreu, T. & Morante, J. R. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries. Appl. Energ. 109, 344–351 (2013). 94. Han, P. et al. RuSe/reduced graphene oxide: An efficient electrocatalyst for VO2+/VO2+ redox couples in vanadium redox flow batteries. RSC Adv. 4, 20379–20381 (2014). 95. Shi, L., Liu, S., He, Z. & Shen, J. Nitrogen-doped graphene: Effects of nitrogen species on the properties of the vanadium redox flow battery. Electrochim. Acta 138, 93–100 (2014). 96. Dai, W., Shen, Y., Li, Z., Yu, L. & Qiu, X. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J. Mater. Chem. A 2, 12423–12432 (2014). 97. Dai, W. et al. Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 132, 200–207 (2014). 98. Vargas, O. et al. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 15, 20444–20446 (2013). 99. Choi, D. et al. Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochem. Commun. 12, 378–381 (2010). 100. Chae, C., Noh, H.-J., Lee, J. K., Scrosati, B. & Sun, Y.-K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Func. Mater. 24, 3036–3042 (2014). Acknowledgements R.R., A.V. and S.P. acknowledge the financial support of Bundesministerium für Bildung und Forschung (BMBF) within the project ‘IES, Innovative Elektrochemische Superkondensatoren’ (contract number 03EK3010). B.S. is grateful to the Helmholtz Institute Ulm for a six-month visiting professorship position. Author contributions R.R. and A.V. designed the outline of the Progress Article, wrote the manuscript and conceived the figures and tables. S.P. and B.S. supervised and revised the writing. Additional information Reprints and permissions information is available online at www.nature.com/reprints. Correspondence should be addressed to S.P. or B.S. Competing financial interests The authors declare no competing financial interests. NATURE MATERIALS DOI: 10.1038/NMAT4170 PROGRESS ARTICLE © 2014 Macmillan Publishers Limited. All rights reserved