正在加载图片...
. Corni et al. /Journal of the European Ceramic Society 28(2008)1353-1367 1367 161. Zhao, G, Ishizaka, T, Kasai, H, Oikawa, H and Nakanishi, H, Preparation 179. Zhang. C, Zhu, Y-F, Shi, L. and Liang, J, Influence of AC electric field ed film of polyimide nanoparticles for low-k application n dispersion of carbon nanotubes in liquids. J Disper. Sci. Technol., 2006. Mol. Cryst. Lig. Cryst., 2007, 464. 613-620. 27.935-940. 162. Lee, Y. H, Kuo, C. W, Shih, C J, Hung, L M. Fung, K. Z, Wen, S. 180. Zhu, Y-F Zhang, C. Wang, J. D, Shi, L and Liang, J, Influence of B et al, Characterization on the electrophoretic deposition of the 8 mol% of carbon nanotubes in liquids. J. Disper Sci. yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process. Technol.,2006,27,371-375 Mater Sci.Eng.A,2007,445,347-354. 181. Du, C.S. and Pan, N, Supercapacitors using carbon nanotubes films by 163. Vu, Q.T., Pavlik, M, Hebestreit, N, Pfleger, J, Rammelt, U and Plieth, w electrophoretic deposition. J. Power Sources, 2006, 160, 1487-1494. Electrophoretic deposition of nanocomposites formed from polythiophene 182. Du, C.S. and Pan, N, High power density sup electrodes of car. and metal oxides. Electrochim. Acta. 2005.. 1117-1124 bon nanotube films by electrophoretic deposition. Nanotechnology, 2006, 164. Kim, D.-w.. Lee. D.-H, Kim, B -K. Je. H -J. and Park, J -G, Direct 17,5314-5318. assembly of BaTiO3-poly (methyl methacrylate) nanocomposite films. 183. Jung, S. M, Hahn, J, Jung, H. Y and Suh, J S, Clean carbon nanotube Macromol. Rapid Commun., 2006, 27, 1821-1825 field emitters aligned horizontally. Nano Letters, 2006. 6. 1569-1573 Wang, Y and Xu, Z, Nanostructured Ni-wC-Co composite coatings fab- 184. Hahn, J, Jung, S M, Jung, H.Y., Heo, S B, Shin, J. H and Suh, J ricated by electrophoretic deposition. Surf. Coat. TechnoL, 2006, 200 S, Fabrication of clean carbon nanotube field emitters. Appl. Phys. Le 3896-3902. 2006,88[Art.No.113101 166. Pang, X and Zhitomirsky, I, Electrophoretic deposition of composite 185. Hasobe, T, Fukuzumi, S and Kamat, P. V, Organized assemblies of single hydroxyapatite-chitosan coatings. Mater: Character, 2007, 58, 339-348 all carbon nanotubes and porphyrin for photochemical solar cells: charge 167. Louh, R. F, Huang. H. and Tsai, F, Novel deposition of Pt/C nanocata- injection from excited porphyrin into single-walled carbon nanotubes. J. lysts and Nafion solution on carbon-based electrodes via electrophoretic Phys. Chem. b,2006,110,25477-25484 process for PEM fuel cells. J. Fuel Cell Sci. Technol, 2007, 4, 72-78 186. Boccaccini, A.R., Chicatun, F, Cho, J, Bretcanu, O, Chen, Q, Roether, 168. Kaya, C, Kaya, F, Boccaccini, A. R and Chawla, K. K, Fabrication J.A. et al, Carbon nanotube coatings on bioglass-based tissue engineering and characterisation of Ni-coated carbon fibre-reinforced alumina ceran scaffolds. Adv Funct. Mater. 2007.. 2815-2822 es using electrophoretic deposition. Acta Mater., 2001, 49, 187. Singh, I, Kaya, C, Shaffer, M.S. P, Thomas, B. C and Boccaccini, A.R. 189-119 Bioactive ceramic coatings containing carbon nanotubes 169. Stoll, E, Mahr, P. Kruger, H.-G.. Kern, H, Thomas, B. J C. strates by electrophoretic deposition. J Mater Sci., 2006, 41 caccini,AR, Fabrication technologies for oxide-oxide cerami 188. Wang, L L, Chen, Y.w.,Chen, T, Que, w.X. and Sun, Z, Op composites based on electrophoretic deposition. J. Eur. Ceram. So field emission properties of carbon nanotubes cathodes by electrophoretic 26.1567-1576 deposition. Mater. Letf, 2007, 61, 1265-1269 170. Bao, Y and Nicholson, P.S., Constant current electrophoretic infiltration 189. Chicatun, F, Cho, J, Schaab, S, Brusatin, G, Colombo, P, Roether, J deposition of fiber-reinforced ceramic composites. J. Am. Ceram Soc. er al, Carbon nanotube deposits and CNT/SiO2 composite coatings by 2007,90,1063-1070 electrophoretic deposition. Adv. AppL Ceram, 2007, 106, 186-194 171. Jung, D, Tabellion, J. and Clasen, R, Influence of dopants on the 190. Cho, J, Schaab, S, Roether, J. A and Boccaccini, A.R. Nanostructured suspension properties and reactive electrophoretic deposition(REPD) carbon nanotube/TiO2 composite coatings using electrophoretic deposition Electrophoretic Deposition: Fundamentals and Applications Il. Key Eng (EPD). J Nanoparticle Res, 2008, 10, 99-105 Mare,2006,314,8l-86 191. Rout, C S, Krishna, S.H., Vivekchand, S R C, Govindaraj, A and Rao, 172. Tabellion, J, Zeiner, J and Clasen, R, Manufacturing of pure and doped C N.R., Hydrogen and ethanol sensors based on ZnO nanorods, nanowi silica and multicomponent glasses from Sioz nanoparticles by reactive and nanotubes. Chem. Phys. Len. 2006. 418. 586-590. lectrophoretic deposition J Mater Sci, 2006, 41, 8173-8180 192. Kim, G.S. Ansar, SG. Seo, H. K. Kim, Y.S. and Shin, H. S, Effect of 173. Iwata, F, Nagami, S, Sumiya, Y and Sasaki, A, Nanometre-scale deposi- annealing temperature on structural and bonded states of titanate nanotube ion of colloidal Au particles using electrophoresis in a nanopipette probe films. J. Appl. Phys., 2007, 101 [Art. No. 024314] Nanotechnology, 2007, 18 [Art. No. 105301 193. Yang J, Li, J. B, Lin, H, Yang, X. Z, Tong, X.G. and Guo, G.F., A 174. Belin, T. and Epron, F, Characterization methods of carbon nanotubes: a novel preparation method for NiCo2O4 electrodes stacked with hexag review. Mater Sci. Eng. B, 2005, 119. 105-118 onal nanosheets for water electrolysis. J. Appl. Electrochem., 2006, 36 175. Gooding, J.J., Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta, 2005, 194. Yang, J, Yang, X.Z., Li, J. B, Lin, H, Wang, N Lin, C. F. et aL., Fabri- 50.3049-3060. cation of porous nanocrystalline NiCo2 O4 electrode for water electrolysis 176. Deheer. w.A. Chatelain, A and Ugarte, D.A. Carbon nanotube field- Rare Met. Mater Eng, 2006, emission electron source. Science. 1995. 270.1179-1180 195. Sugimoto. W, Yokoshima, K. K. Murakami. Y and Takasu. Y 177 Baughman, R. H, Zakhidov, A.A. and de heer, w. A, Carbon Fabrication of thin-film. fe nt electrodes composed nanotubes-the route towards applications. Science, 2002, 297, 787-792 of ruthenic acid nanosheets by electrophoretic deposition and appli 178. Ramirez. A P, Carbon nanotubes for science and technology. Bell Labs cation to electrochemical capacitors. J. Electrochem. Soc., 2006, 153, Tech.J,2005,10.171-185. A255-A260.I. Corni et al. / Journal of the European Ceramic Society 28 (2008) 1353–1367 1367 161. Zhao, G., Ishizaka, T., Kasai, H., Oikawa, H. and Nakanishi, H., Preparation of multilayered film of polyimide nanoparticles for low-k applications. Mol. Cryst. Liq. Cryst., 2007, 464, 613–620. 162. Lee, Y. H., Kuo, C. W., Shih, C. J., Hung, I. M., Fung, K. Z., Wen, S. B et al., Characterization on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol–gel process. Mater. Sci. Eng. A, 2007, 445, 347–354. 163. Vu, Q. T., Pavlik, M., Hebestreit, N., Pfleger, J., Rammelt, U. and Plieth, W., Electrophoretic deposition of nanocomposites formed from polythiophene and metal oxides. Electrochim. Acta, 2005, 51, 1117–1124. 164. Kim, D.-W., Lee, D.-H., Kim, B.-K., Je, H.-J. and Park, J.-G., Direct assembly of BaTiO3-poly(methyl methacrylate) nanocomposite films. Macromol. Rapid Commun., 2006, 27, 1821–1825. 165. Wang, Y. and Xu, Z., Nanostructured Ni–WC–Co composite coatings fab￾ricated by electrophoretic deposition. Surf. Coat. Technol., 2006, 200, 3896–3902. 166. Pang, X. and Zhitomirsky, I., Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater. Character., 2007, 58, 339–348. 167. Louh, R. F., Huang, H. and Tsai, F., Novel deposition of Pt/C nanocata￾lysts and Nafion® solution on carbon-based electrodes via electrophoretic process for PEM fuel cells. J. Fuel Cell Sci. Technol., 2007, 4, 72–78. 168. Kaya, C., Kaya, F., Boccaccini, A. R. and Chawla, K. K., Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta Mater., 2001, 49, 1189–1197. 169. Stoll, E., Mahr, P., Kruger, H.-G., Kern, H., Thomas, B. J. C. and Boc- ¨ caccini, A. R., Fabrication technologies for oxide–oxide ceramic matrix composites based on electrophoretic deposition. J. Eur. Ceram. Soc., 2006, 26, 1567–1576. 170. Bao, Y. and Nicholson, P. S., Constant current electrophoretic infiltration deposition of fiber-reinforced ceramic composites. J. Am. Ceram. Soc., 2007, 90, 1063–1070. 171. Jung, D., Tabellion, J. and Clasen, R., Influence of dopants on the suspension properties and reactive electrophoretic deposition (REPD). Electrophoretic Deposition: Fundamentals and Applications II. Key Eng. Mater., 2006, 314, 81–86. 172. Tabellion, J., Zeiner, J. and Clasen, R., Manufacturing of pure and doped silica and multicomponent glasses from SiO2 nanoparticles by reactive electrophoretic deposition. J. Mater. Sci., 2006, 41, 8173–8180. 173. Iwata, F., Nagami, S., Sumiya, Y. and Sasaki, A., Nanometre-scale deposi￾tion of colloidal Au particles using electrophoresis in a nanopipette probe. Nanotechnology, 2007, 18 [Art. No. 105301]. 174. Belin, T. and Epron, F., Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B, 2005, 119, 105–118. 175. Gooding, J. J., Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta, 2005, 50, 3049–3060. 176. Deheer, W. A., Chatelain, A. and Ugarte, D. A., Carbon nanotube field￾emission electron source. Science, 1995, 270, 1179–1180. 177. Baughman, R. H., Zakhidov, A. A. and de Heer, W. A., Carbon nanotubes—the route towards applications. Science, 2002, 297, 787–792. 178. Ramirez, A. P., Carbon nanotubes for science and technology. Bell Labs Tech. J., 2005, 10, 171–185. 179. Zhang, C., Zhu, Y.-F., Shi, L. and Liang, J., Influence of AC electric field on dispersion of carbon nanotubes in liquids. J. Disper. Sci. Technol., 2006, 27, 935–940. 180. Zhu, Y.-F., Zhang, C., Wang, J. D., Shi, L. and Liang, J., Influence of electric field on dispersion of carbon nanotubes in liquids. J. Disper. Sci. Technol., 2006, 27, 371–375. 181. Du, C. S. and Pan, N., Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources, 2006, 160, 1487–1494. 182. Du, C. S. and Pan, N., High power density supercapacitor electrodes of car￾bon nanotube films by electrophoretic deposition. Nanotechnology, 2006, 17, 5314–5318. 183. Jung, S. M., Hahn, J., Jung, H. Y. and Suh, J. S., Clean carbon nanotube field emitters aligned horizontally. Nano Letters, 2006, 6, 1569–1573. 184. Hahn, J., Jung, S. M., Jung, H. Y., Heo, S. B., Shin, J. H. and Suh, J. S., Fabrication of clean carbon nanotube field emitters. Appl. Phys. Lett., 2006, 88 [Art. No. 113101]. 185. Hasobe, T., Fukuzumi, S. and Kamat, P. V., Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells: charge injection from excited porphyrin into single-walled carbon nanotubes. J. Phys. Chem. B, 2006, 110, 25477–25484. 186. Boccaccini, A. R., Chicatun, F., Cho, J., Bretcanu, O., Chen, Q., Roether, J. A. et al., Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv. Funct. Mater., 2007, 17, 2815–2822. 187. Singh, I., Kaya, C., Shaffer, M. S. P., Thomas, B. C. and Boccaccini, A. R., Bioactive ceramic coatings containing carbon nanotubes on metallic sub￾strates by electrophoretic deposition. J. Mater. Sci., 2006, 41, 8144–8151. 188. Wang, L. L., Chen, Y. W., Chen, T., Que, W. X. and Sun, Z., Optimization of field emission properties of carbon nanotubes cathodes by electrophoretic deposition. Mater. Lett., 2007, 61, 1265–1269. 189. Chicatun, F., Cho, J., Schaab, S., Brusatin, G., Colombo, P., Roether, J. A. et al., Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Adv. Appl. Ceram., 2007, 106, 186–194. 190. Cho, J., Schaab, S., Roether, J. A. and Boccaccini, A. R., Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanoparticle Res., 2008, 10, 99–105. 191. Rout, C. S., Krishna, S. H., Vivekchand, S. R. C., Govindaraj, A. and Rao, C. N. R., Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem. Phys. Lett., 2006, 418, 586–590. 192. Kim, G. S., Ansari, S. G., Seo, H. K., Kim, Y. S. and Shin, H. S., Effect of annealing temperature on structural and bonded states of titanate nanotube films. J. Appl. Phys., 2007, 101 [Art. No. 024314]. 193. Yang, J., Li, J. B., Lin, H., Yang, X. Z., Tong, X. G. and Guo, G. F., A novel preparation method for NiCo2O4 electrodes stacked with hexag￾onal nanosheets for water electrolysis. J. Appl. Electrochem., 2006, 36, 945–950. 194. Yang, J., Yang, X. Z., Li, J. B., Lin, H., Wang, N., Lin, C. F. et al., Fabri￾cation of porous nanocrystalline NiCo2O4 electrode for water electrolysis. Rare Met. Mater. Eng., 2006, 35, 646–647. 195. Sugimoto, W., Yokoshima, K., Ohuchi, K., Murakami, Y. and Takasu, Y., Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and appli￾cation to electrochemical capacitors. J. Electrochem. Soc., 2006, 153, A255–A260
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有