正在加载图片...
Although it is still a nascent field, a few fundamental principles are already apparent. Most importantly, the evolution of environmentally appropriate technology is seen as critical to reaching and maintaining a sustainable state. Unlike earlier approaches to environmental issues, which tended to regard technology as neutral at best, industrial ecology focuses on development of economically and environmentally efficient technology as key to any desirable, sustainable global state. Also, environmental considerations must be integrated into all aspects of economic behavior, especially product and process design, and the design of economic and social systems within which those products are used and disposed. Environmental concerns must be internalized into technological systems and econo factors. It is not sufficient to design an energy efficient computer, for example; it is also necessary to ensure that the product, its components, or its constituent materials can be refurbished or recycled after the customer is through with it-all of this in a highly competitive and rapidly evolving market. This consideration implies a comprehensive and systems-based approach that is far more fundamental than any we have yet developed Industrial ecology requires an approach that is truly multidisciplinary. It is important to emphasize that industrial ecology is an objective field of study based on existing scientific and technological disciplines, not a form of industrial policy. It is profoundly a systems oriented and comprehensive approach which poses problems for most institutions-the government, riddled with fiefdoms; academia, with rigid departmental lines; and private firms, with job slots defined by occupation. Nonetheless, it is all too frequent that industrial ecology is seen as an economic program by economists, a legal program by lawyers, a technical program by engineers, and a scientific program by scientists. It is in part each of these; more importantly, it is all of these Industrial ecology has an important implication, however, of special interest to electronics and telecommu- nications engineers, and thus deserving of emphasis. The achievement of sustainability will, in part, require the substitution of intellectual and information capital for traditional physical capital, energy, and material inputs. Environmentally appropriate electronics, information management, and telecommunications technol- ogies and services-and the manufacturing base that supports them-are therefore enabling technologies to achieve sustainable development. This offers unique opportunities for professional satisfaction, but also places a unique responsibility on the community of electrical and electronics engineers. We in particular cannot simply wait for the theory of industrial ecology to be fully developed before taking action. 111.3 Design for environment Design for Environment(DFE)is the means by which the precepts of industrial ecology, as currently understood, an in fact begin to be implemented in the real world today. DFE requires that environmental objectives and constraints be driven into process and product design, and materials and technology choices. The focus is on the design stage because, for many articles, that is where most, if not all, of their life cycle environmental impacts are explicitly or implicitly established. Traditionally, electronics design has been based on a correct-by-verification approach, in which the environmental ramifications of a product(from manufac- turing through disposition) are not considered until the product design is completed. DFE, by contrast, takes place early in a product's design phase as part of the concurrent engineering process to ensure that the environmental consequences of a product s life cycle are understood before manufacturing decisions are committed It is estimated that some 80 to 90% of the environmental impacts generated by product manufacture, use, and disposal are"locked-in"by the initial design. Materials choices, for example, ripple backwards towards environmental impacts associated with the extractive, smelting, and chemical industries. The design of a product and component selection control many environmental impacts associated with manufacturing, enabling, for example, substitution of no-clean or aqueous cleaning of printed wiring boards for processes that release ozone lepleting substances, air toxics, or volatile organic compounds that are precursors of photochemical smog. The design of products controls many aspects of environmental impacts during use--energy efficient design is one cample Product design also controls the ease with which a product may be refurbished, or disassembled for parts or materials reclamation, after consumer use. DFE tools and methodologies offer a means to address such concerns at the design stage. Obviously, DFE is not a panacea. It cannot, for example, compensate for failures of the current price structure to account for external factors, such as the real (i.e, social) cost of energy. It cannot compensate for deficiencies e 2000 by CRC Press LLC© 2000 by CRC Press LLC Although it is still a nascent field, a few fundamental principles are already apparent. Most importantly, the evolution of environmentally appropriate technology is seen as critical to reaching and maintaining a sustainable state. Unlike earlier approaches to environmental issues, which tended to regard technology as neutral at best, industrial ecology focuses on development of economically and environmentally efficient technology as key to any desirable, sustainable global state. Also, environmental considerations must be integrated into all aspects of economic behavior, especially product and process design, and the design of economic and social systems within which those products are used and disposed. Environmental concerns must be internalized into technological systems and economic factors. It is not sufficient to design an energy efficient computer, for example; it is also necessary to ensure that the product, its components, or its constituent materials can be refurbished or recycled after the customer is through with it—all of this in a highly competitive and rapidly evolving market. This consideration implies a comprehensive and systems-based approach that is far more fundamental than any we have yet developed. Industrial ecology requires an approach that is truly multidisciplinary. It is important to emphasize that industrial ecology is an objective field of study based on existing scientific and technological disciplines, not a form of industrial policy. It is profoundly a systems oriented and comprehensive approach which poses problems for most institutions—the government, riddled with fiefdoms; academia, with rigid departmental lines; and private firms, with job slots defined by occupation. Nonetheless, it is all too frequent that industrial ecology is seen as an economic program by economists, a legal program by lawyers, a technical program by engineers, and a scientific program by scientists. It is in part each of these; more importantly, it is all of these. Industrial ecology has an important implication, however, of special interest to electronics and telecommu￾nications engineers, and thus deserving of emphasis. The achievement of sustainability will, in part, require the substitution of intellectual and information capital for traditional physical capital, energy, and material inputs. Environmentally appropriate electronics, information management, and telecommunications technol￾ogies and services—and the manufacturing base that supports them—are therefore enabling technologies to achieve sustainable development. This offers unique opportunities for professional satisfaction, but also places a unique responsibility on the community of electrical and electronics engineers. We in particular cannot simply wait for the theory of industrial ecology to be fully developed before taking action. 111.3 Design for Environment Design for Environment (DFE) is the means by which the precepts of industrial ecology, as currently understood, can in fact begin to be implemented in the real world today. DFE requires that environmental objectives and constraints be driven into process and product design, and materials and technology choices. The focus is on the design stage because, for many articles, that is where most, if not all, of their life cycle environmental impacts are explicitly or implicitly established. Traditionally, electronics design has been based on a correct-by-verification approach, in which the environmental ramifications of a product (from manufac￾turing through disposition) are not considered until the product design is completed. DFE, by contrast, takes place early in a product’s design phase as part of the concurrent engineering process to ensure that the environmental consequences of a product’s life cycle are understood before manufacturing decisions are committed. It is estimated that some 80 to 90% of the environmental impacts generated by product manufacture, use, and disposal are “locked-in” by the initial design. Materials choices, for example, ripple backwards towards environmental impacts associated with the extractive, smelting, and chemical industries. The design of a product and component selection control many environmental impacts associated with manufacturing, enabling, for example, substitution of no-clean or aqueous cleaning of printed wiring boards for processes that release ozone depleting substances, air toxics, or volatile organic compounds that are precursors of photochemical smog. The design of products controls many aspects of environmental impacts during use—energy efficient design is one example. Product design also controls the ease with which a product may be refurbished, or disassembled for parts or materials reclamation, after consumer use. DFE tools and methodologies offer a means to address such concerns at the design stage. Obviously, DFE is not a panacea. It cannot, for example, compensate for failures of the current price structure to account for external factors, such as the real (i.e., social) cost of energy. It cannot compensate for deficiencies
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有