正在加载图片...
第3期 刘柏谦等:大颗粒煤流化床燃烧的微观过程 .301. 400 明微孔和小孔的数量占绝大多数,与燃烧时间有关; 大孔数量不随燃烧过程而增加, ★1=10s 300 0-1=80s (③)煤颗粒的比表面积随燃烧时间的增加呈现 明显的上升趋势,与孔隙结构的变化基本相符合, 参考文献 100 [1]Cen K F,Ni M J.Luo Z Y,et al.Theory,Design and Opera- tion of Circulating Fluidized Bed Boilers.Beijing:China Electric 200 40060080010001200 Power Press.1998:207 孔隙面积/像素 (岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运 行,北京:中国电力出版社,1998:270) 图4燃烧时间为10s和80s时孔隙分布对比 [2]Adanez J.de Diego L F.Gayan P,et al.A model for predication Fig4 Pore distribution comparison between 10s and 80s combus- of carbon combustion efficiency in circulating fluidized bed com- tion time bustor.Fel,1995,74(7):1049 [3]Arena U.Chiroe R.Amore M D.et al.Some issues in modeling 3氮吸附法测量煤颗粒的比表面积 bubbling and circulating fluidized bed coal combustors.Po der Technol,1995,82(3):301 为验证图像处理的可靠性,利用气体吸附方法 [4]KnoebigT,Luecke K.Werther J.Mixing and reaction in the 测量相同条件下煤颗粒比表面积变化,见图5 circulating fluidized bed,a three dimensional combustor model. 140 Chem Eng Sci.1999.54:2151 [5]Winter F.Prah M E.Hofbauer H.Temperature in a fuel particle 120 burning in a fluidized bed:the effect of drying,devolatilization >100 and char combustion.Combust Flame,1997,108:302 0 [6]Marban G.Pis J J.Fuertes A B.Charactering fuels for atmo- 80 spheric fluidized bed combustion.Combust Flame.1995,103; 60 41 40 [7]Zhou HS,Flamant G.Gauthier D.DEM-LES simulation of coal 20 combustion in a bubbling fluidized bed lI:Coal combustion at a 日4 particle level.Chem Eng Sci.2004.59:4205 50 100150 200 250 [8]Saastamoinen JJ.Tourunen A.Hamalainen J.et al.Analytical 时间s solution for steady and unsteady state particle size distribution in FBC and CFBC boiler for non-breaking char particle.Combust 图5比表面积随燃绕时间变化 Flame,2003.132,395 Fig.5 Change in specific surface area with combustion time [9]Eaton A M.Smoot L D.Hill C.et al.Components,formula- tions.solutions,evaluation and application of comprehensive com 由图5可见,煤颗粒比表面积随时间的变化总 bustion models.Prog Energy Combust Sei.1999.25:387 体是增大的,由前面孔隙长大的研究可知,燃烧过 [10]Yates J G.Effects of temperature and pressure on gas solid flu- 程中孔隙数量及其面积分数均增加,而煤颗粒内表 idization.Chem Eng Sci.1996,51(2):167 面积增大更为显著,内表面积在煤颗粒总面积中比 [11]Sriramulu S,Sane S.Pradeep,et al.Mathematical modeling of 外表面积大得多,在持续的燃烧过程中起主导作用 fluidized bed combustion.Fuel,1996,75(12):1351 比表面积的变化与孔隙的变化是相一致的, [12]Govender A.van Dyk J C.Effect of wet screening on particle size distribution and coal properties.Fuel.2003.82:2231 4结论 [13]Castleman J M.Process performance of the TVA 20MW atmo- spheric fluidized bed combustion pilot plant//Proceedings of the (1)大颗粒煤在流化床燃烧过程中,颗粒表面 8th International conference on FBC.1985:196 孔隙的面积分数随燃烧时间增加而增加:在燃烧初 [14]Chandran RR.Duqum J N.Perna M A.et al.A New method 始阶段增加较快,后续残碳燃烧阶段增加较慢, for AFBC fuels characterization//Mustonen J P.Proceedings of the 9th International conference on FBC.1987:292 (2)扫描电镜图像的孔隙轮廓图分析表明,在 [15]Duqum J N.Tang JT,Morris T A.AFBC performance com- 流化床燃烧过程中,大于400像素的孔隙数量几乎 parison for under hed and over bed feed systems//Proceedings of 不变,而小于400像素的孔隙呈指数方式增长,表 the 8th International conference on FBC.1985:255图4 燃烧时间为10s 和80s 时孔隙分布对比 Fig.4 Pore distribution comparison between10s and80s combus￾tion time 3 氮吸附法测量煤颗粒的比表面积 为验证图像处理的可靠性‚利用气体吸附方法 测量相同条件下煤颗粒比表面积变化‚见图5. 图5 比表面积随燃烧时间变化 Fig.5 Change in specific surface area with combustion time 由图5可见‚煤颗粒比表面积随时间的变化总 体是增大的.由前面孔隙长大的研究可知‚燃烧过 程中孔隙数量及其面积分数均增加‚而煤颗粒内表 面积增大更为显著.内表面积在煤颗粒总面积中比 外表面积大得多‚在持续的燃烧过程中起主导作用. 比表面积的变化与孔隙的变化是相一致的. 4 结论 (1) 大颗粒煤在流化床燃烧过程中‚颗粒表面 孔隙的面积分数随燃烧时间增加而增加:在燃烧初 始阶段增加较快‚后续残碳燃烧阶段增加较慢. (2) 扫描电镜图像的孔隙轮廓图分析表明‚在 流化床燃烧过程中‚大于400像素的孔隙数量几乎 不变‚而小于400像素的孔隙呈指数方式增长.表 明微孔和小孔的数量占绝大多数‚与燃烧时间有关; 大孔数量不随燃烧过程而增加. (3) 煤颗粒的比表面积随燃烧时间的增加呈现 明显的上升趋势‚与孔隙结构的变化基本相符合. 参 考 文 献 [1] Cen K F‚Ni M J‚Luo Z Y‚et al.Theory‚Design and Opera￾tion of Circulating Fluidized Bed Boilers.Beijing:China Electric Power Press‚1998:207 (岑可法‚倪明江‚骆仲泱‚等.循环流化床锅炉理论设计与运 行.北京:中国电力出版社‚1998:270) [2] Adanez J‚de Diego L F‚Gayan P‚et al.A model for predication of carbon combustion efficiency in circulating fluidized bed com￾bustor.Fuel‚1995‚74(7):1049 [3] Arena U‚Chiroe R‚Amore M D‚et al.Some issues in modeling bubbling and circulating fluidized bed coal combustors.Pow der Technol‚1995‚82(3):301 [4] Knoebig T‚Luecke K‚Werther J.Mixing and reaction in the circulating fluidized bed‚a three-dimensional combustor model. Chem Eng Sci‚1999‚54:2151 [5] Winter F‚Prah M E‚Hofbauer H.Temperature in a fuel particle burning in a fluidized bed:the effect of drying‚devolatilization and char combustion.Combust Flame‚1997‚108:302 [6] Marban G‚Pis J J‚Fuertes A B.Charactering fuels for atmo￾spheric fluidized bed combustion.Combust Flame‚1995‚103: 41 [7] Zhou H S‚Flamant G‚Gauthier D.DEM-LES simulation of coal combustion in a bubbling fluidized bed Ⅱ:Coal combustion at a particle level.Chem Eng Sci‚2004‚59:4205 [8] Saastamoinen J J‚Tourunen A‚Hamalainen J‚et al.Analytical solution for steady and unsteady state particle size distribution in FBC and CFBC boiler for non-breaking char particle.Combust Flame‚2003‚132:395 [9] Eaton A M‚Smoot L D‚Hill S C‚et al.Components‚formula￾tions‚solutions‚evaluation and application of comprehensive com￾bustion models.Prog Energy Combust Sci‚1999‚25:387 [10] Yates J G.Effects of temperature and pressure on gas solid flu￾idization.Chem Eng Sci‚1996‚51(2):167 [11] Sriramulu S‚Sane S‚Pradeep‚et al.Mathematical modeling of fluidized bed combustion.Fuel‚1996‚75(12):1351 [12] Govender A‚van Dyk J C.Effect of wet screening on particle size distribution and coal properties.Fuel‚2003‚82:2231 [13] Castleman J M.Process performance of the TVA20MW atmo￾spheric fluidized bed combustion pilot plant∥ Proceedings of the 8th International conference on FBC‚1985:196 [14] Chandran R R‚Duqum J N‚Perna M A‚et al.A New method for AFBC fuels characterization∥Mustonen J P.Proceedings of the9th International conference on FBC‚1987:292 [15] Duqum J N‚Tang J T‚Morris T A.AFBC performance com￾parison for under bed and over bed feed systems∥ Proceedings of the8th International conference on FBC‚1985:255 第3期 刘柏谦等: 大颗粒煤流化床燃烧的微观过程 ·301·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有