正在加载图片...
吕延春等:基于多功能转炉炼钢法的连续循环治炼过程 ·341· 度、炉内渣量和炉渣成分.脱碳阶段以脱磷结束倒出 2] Ogawa Y,Yano M,Kitamura S,et al.Development of the contin- 炉渣量为基础,计算脱碳开始前炉内钢液和炉渣参数, uous dephosphorization and decarburization process using BOF 结合钢种对终点温度和成分要求设定脱碳阶段控制 Tetsu-o-Hagane,2001,87(1)21 B] Morita K,Kumakura M,Washizu T,et al.Efficiency promotion 参数. of refining process in Nippon steel corporation /The 4th Interna- 工艺的经济性主要通过降低辅耗与钢铁料消耗来 tional Congress on the Science and Technology of Steelmaking.Gi- 实现.高碱度终渣在脱磷阶段的利用降低了石灰的加 fu,2008:253 入量,进而降低渣量、钢铁料、供氧量等的消耗.另外, 4] Wang X H,Zhu G S,Li H B,et al.Research on oxygen convert- 脱磷阶段低TFe含量(实际生产TFe≤I2%)外排炉渣 er "double slag and slag"technology of steelmaking.China 与常规工艺外排炉渣TFe≤18%相比进一步降低了钢 Metall,.2013,23(4):40 (王新华,朱国森,李海波,等.氧气顶吹转炉“留渣+双渣” 铁料的消耗 炼钢工艺技术研究.中国治金,2013,23(1):40) 4结论 5]Iwasaki M,Matsuo M.Change and development of steel-making technology.Nippon Steel Tech Rep,2012(101):88 (1)通过计算,实验渣系的氧化性可满足脱磷阶 6]Matsumiya T,Ichida M.Recent progress and topics in iron-and 段(铁液中[C]≥2.8%)铁水去磷至0.025%的热力 steelmaking technology in Japan /The 10th Japan-China Sympo- 学条件. sium on Science and Technology of lron and steel.Chiba,2004:11 (2)渣中最终固磷相是含有Si和Ca元素的渣 ] SasakiN,Ogawa Y,Mukawa S,et al.Improvement in hot-metal dephosphorization.Nippon Steel Tech Rep,2013(104):26 相,渣中Fe0起到传递(O)与化渣作用,控制较高Fe0 8]Turkdogan E T.Assessment of P2Os activity coefficients in molten 有利于脱磷,更多的是源于提高了石灰的熔解速度和 slag5.S0lnt,2000,40(10):964 加速了炉渣碱度的提高. 9]Huang X H.Iron and Steel Metallurgy Principle.2nd Ed.Bei- (3)连续循环治炼过程中,随着炉内渣量的累积, jing:Metallurgical Industry Press,2004 石灰加入量降低,由65kgt降低至31kgt',钢水 (黄希祜.钢铁治金原理.2版.北京:治金工业出版社, P]由0.018%降低至0.005%,达到平衡状态. 1997) (4)连续循环治炼中,脱磷阶段结束倒出炉渣渣 [10]Association of German Steel Engineers.Slag Atlas.Beijing: Metallurgical Industry Press,2004 量60~80kgt',整个循环结束倒出所有炉渣120~ (联邦德国钢铁工程师协会.渣图集.北京:治金工业出版 130kg1,平均渣量80kg11左右,较普通治炼工艺 社,1989) 有较大幅度降低 01] Yang W Y,Wang ML,Cui S X.Study of the application of slag in converter steelmaking.J Iron Steel Res,2007,12(1):10 参考文献 (杨文远,王明林,崔淑贤.炉渣的岩相研究在转炉炼钢中 Emi T.Steelmaking system for quality steel mass production for 的应用.钢铁研究学报,2007,12(1):10) sustainable future of steel industry.Steel Res Int,2014,85(8): [2]Kumakura M.Advances in the refining technology and the future 1274 prospects.Nippon Steel Tech Rep,2013(104):5吕延春等: 基于多功能转炉炼钢法的连续循环冶炼过程 度、炉内渣量和炉渣成分. 脱碳阶段以脱磷结束倒出 炉渣量为基础,计算脱碳开始前炉内钢液和炉渣参数, 结合钢种对终点温度和成分要求设定脱碳阶段控制 参数. 工艺的经济性主要通过降低辅耗与钢铁料消耗来 实现. 高碱度终渣在脱磷阶段的利用降低了石灰的加 入量,进而降低渣量、钢铁料、供氧量等的消耗. 另外, 脱磷阶段低 TFe 含量( 实际生产 TFe≤12% ) 外排炉渣 与常规工艺外排炉渣 TFe≤18% 相比进一步降低了钢 铁料的消耗. 4 结论 ( 1) 通过计算,实验渣系的氧化性可满足脱磷阶 段( 铁液中[C]≥2. 8% ) 铁水去磷至 0. 025% 的热力 学条件. ( 2) 渣中最终固磷相是含有 Si 和 Ca 元素的渣 相,渣中 FeO 起到传递( O) 与化渣作用,控制较高 FeO 有利于脱磷,更多的是源于提高了石灰的熔解速度和 加速了炉渣碱度的提高. ( 3) 连续循环冶炼过程中,随着炉内渣量的累积, 石灰加入量降低,由 65 kg·t - 1 降低至 31 kg·t - 1 ,钢水 [P]由 0. 018% 降低至 0. 005% ,达到平衡状态. ( 4) 连续循环冶炼中,脱磷阶段结束倒出炉渣渣 量 60 ~ 80 kg·t - 1 ,整个循环结束倒出所有炉渣 120 ~ 130 kg·t - 1 ,平均渣量 80 kg·t - 1 左右,较普通冶炼工艺 有较大幅度降低. 参 考 文 献 [1] Emi T. Steelmaking system for quality steel mass production for sustainable future of steel industry. Steel Res Int,2014,85( 8) : 1274 [2] Ogawa Y,Yano M,Kitamura S,et al. Development of the contin￾uous dephosphorization and decarburization process using BOF. Tetsu-to-Hagane,2001,87( 1) : 21 [3] Morita K,Kumakura M,Washizu T,et al. Efficiency promotion of refining process in Nippon steel corporation / / The 4th Interna￾tional Congress on the Science and Technology of Steelmaking. Gi￾fu,2008: 253 [4] Wang X H,Zhu G S,Li H B,et al. Research on oxygen convert￾er “double slag and slag” technology of steelmaking. China Metall,2013,23( 4) : 40 ( 王新华,朱国森,李海波,等. 氧气顶吹转炉“留渣 + 双渣” 炼钢工艺技术研究. 中国冶金,2013,23( 1) : 40) [5] Iwasaki M,Matsuo M. Change and development of steel-making technology. Nippon Steel Tech Rep,2012( 101) : 88 [6] Matsumiya T,Ichida M. Recent progress and topics in iron-and steelmaking technology in Japan / / The 10th Japan--China Sympo￾sium on Science and Technology of Iron and steel. Chiba,2004: 11 [7] Sasaki N,Ogawa Y,Mukawa S,et al. Improvement in hot-metal dephosphorization. Nippon Steel Tech Rep,2013( 104) : 26 [8] Turkdogan E T. Assessment of P2O5 activity coefficients in molten slags. ISIJ Int,2000,40( 10) : 964 [9] Huang X H. Iron and Steel Metallurgy Principle. 2nd Ed. Bei￾jing: Metallurgical Industry Press,2004 ( 黄希 祜. 钢 铁 冶 金 原 理. 2 版. 北 京: 冶金工业出版社, 1997) [10] Association of German Steel Engineers. Slag Atlas. Beijing: Metallurgical Industry Press,2004 ( 联邦德国钢铁工程师协会. 渣图集. 北京: 冶金工业出版 社,1989) [11] Yang W Y,Wang M L,Cui S X. Study of the application of slag in converter steelmaking. J Iron Steel Res,2007,12( 1) : 10 ( 杨文远,王明林,崔淑贤. 炉渣的岩相研究在转炉炼钢中 的应用. 钢铁研究学报,2007,12( 1) : 10) [12] Kumakura M. Advances in the refining technology and the future prospects. Nippon Steel Tech Rep,2013( 104) : 5 ·341·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有