正在加载图片...
Cell Metabolism CelPress Perspective REFERENCES M(2017)Metabolic eyn health and SoCsane智aonovo8edPdaeP9eo2sg optimal function.Immunity131-132 474778 eeataggmcrobotanaapiemmuneho io B20990Bn,8。co o.Cell 166376 hoo y.A.H(20) caroeoramhesnirognemd uences Cel158705-721. tmaaaeao17fa2t6gmunyaaneactone 2 Cell Metabolism 32.October 6.2020 521 REFERENCES Agus, A., Planchais, J., and Sokol, H. (2018). Gut microbiota regulation of tryp￾tophan metabolism in health and disease. Cell Host Microbe 23, 716–724. Al-Harbi, N.O., Nadeem, A., Ahmad, S.F., Alotaibi, M.R., AlAsmari, A.F., Ala￾nazi, W.A., Al-Harbi, M.M., El-Sherbeeny, A.M., and Ibrahim, K.E. (2018). Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int. Immunopharmacol. 58, 24–31. Allaire, J.M., Crowley, S.M., Law, H.T., Chang, S.-Y., Ko, H.-J., and Vallance, B.A. (2018). The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696. Bachem, A., Makhlouf, C., Binger, K.J., de Souza, D.P., Tull, D., Hochheiser, K., Whitney, P.G., Fernandez-Ruiz, D., Dahling, S., Kastenm € uller, W., et al. € (2019). Microbiota-derived short-chain fatty acids promote the memory poten￾tial of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5. Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenko- € vich, C.F., and Gordon, J.I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723. Badawy, A.A.-B. (2019). Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention. Egypt J Basic Clin Pharma￾col 9, https://doi.org/10.32527/2019/101415. Balmer, M.L., Ma, E.H., Bantug, G.R., Grahlert, J., Pfister, S., Glatter, T., € Jauch, A., Dimeloe, S., Slack, E., Dehio, P., et al. (2016). Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324. Bantug, G.R., Galluzzi, L., Kroemer, G., and Hess, C. (2018). The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34. Blanton, L.V., Barratt, M.J., Charbonneau, M.R., Ahmed, T., and Gordon, J.I. (2016). Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 352, 1533. Britton, G.J., Contijoch, E.J., Mogno, I., Vennaro, O.H., Llewellyn, S.R., Ng, R., Li, Z., Mortha, A., Merad, M., Das, A., et al. (2019). Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORgt + regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4. Buck, M.D., O’Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.-H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., van der Windt, G.J.W., et al. (2016). Mito￾chondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76. Cavallari, J.F., Barra, N.G., Foley, K.P., Lee, A., Duggan, B.M., Henriksbo, B.D., Anheˆ , F.F., Ashkar, A.A., and Schertzer, J.D. (2020). Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and meta￾bolic inflammation in mice. Am. J. Physiol. Endocrinol. Metab. 318, E579–E585. Cory, J.G., and Cory, A.H. (2006). Critical roles of glutamine as nitrogen donors in purine and pyrimidine nucleotide synthesis: asparaginase treatment in child￾hood acute lymphoblastic leukemia. In Vivo 20, 587–589. Cox, L.M., Yamanishi, S., Sohn, J., Alekseyenko, A.V., Leung, J.M., Cho, I., Kim, S.G., Li, H., Gao, Z., Mahana, D., et al. (2014). Altering the intestinal micro￾biota during a critical developmental window has lasting metabolic conse￾quences. Cell 158, 705–721. Crakes, K.R., Santos Rocha, C., Grishina, I., Hirao, L.A., Napoli, E., Gaulke, C.A., Fenton, A., Datta, S., Arredondo, J., Marco, M.L., et al. (2019). PPARa-targeted mitochondrial bioenergetics mediate repair of intestinal bar￾riers at the host-microbe intersection during SIV infection. Proc. Natl. Acad. Sci. USA 116, 24819–24829. Di Luccia, B., Gilfillan, S., Cella, M., Colonna, M., and Huang, S.C.-C. (2019). ILC3s integrate glycolysis and mitochondrial production of reactive oxygen species to fulfill activation demands. J. Exp. Med. 216, 2231–2241. Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy meta￾bolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526. Fiorucci, S., Biagioli, M., Zampella, A., and Distrutti, E. (2018). Bile acids acti￾vated receptors regulate innate immunity. Front. Immunol. 9, 1853. Frauwirth, K.A., Riley, J.L., Harris, M.H., Parry, R.V., Rathmell, J.C., Plas, D.R., Elstrom, R.L., June, C.H., and Thompson, C.B. (2002). The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777. Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450. Godinho-Silva, C., Domingues, R.G., Rendas, M., Raposo, B., Ribeiro, H., da Silva, J.A., Vieira, A., Costa, R.M., Barbosa-Morais, N.L., Carvalho, T., and Veiga-Fernandes, H. (2019). Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574, 254–258. Goodpaster, B.H., and Sparks, L.M. (2017). Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036. Gots, J.S. (1971). Regulation of purine and pyrimidine metabolism. In Meta￾bolic Regulation, Third Edition, H.J. Vogel, ed. (Academic Press), pp. 225–255. Guo, C.-J., Allen, B.M., Hiam, K.J., Dodd, D., Van Treuren, W., Higginbottom, S., Nagashima, K., Fischer, C.R., Sonnenburg, J.L., Spitzer, M.H., and Fisch￾bach, M.A. (2019). Depletion of microbiome-derived molecules in the host us￾ing Clostridium genetics. Science 366, eaav1282. Gury-BenAri, M., Thaiss, C.A., Serafini, N., Winter, D.R., Giladi, A., Lara-As￾tiaso, D., Levy, M., Salame, T.M., Weiner, A., David, E., et al. (2016). The spec￾trum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e13. Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., Ha, S., Nelson, B.N., Kelly, S.P., Wu, L., et al. (2019). Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148. Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., Sigl, V., Hanada, T., Hanada, R., Lipinski, S., et al. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481. Honda, K., and Littman, D.R. (2016). The microbiota in adaptive immune ho￾meostasis and disease. Nature 535, 75–84. Hopkins, E.G.D., Roumeliotis, T.I., Mullineaux-Sanders, C., Choudhary, J.S., and Frankel, G. (2019). Intestinal epithelial cells and the microbiome undergo swift reprogramming at the inception of colonic Citrobacter rodentium infec￾tion. MBio 10, e00062-19. Hoytema van Konijnenburg, D.P., Reis, B.S., Pedicord, V.A., Farache, J., Vic￾tora, G.D., and Mucida, D. (2017). Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794.e13. Hsieh, S.-Y., Shih, T.-C., Yeh, C.-Y., Lin, C.-J., Chou, Y.-Y., and Lee, Y.-S. (2006). Comparative proteomic studies on the pathogenesis of human ulcera￾tive colitis. Proteomics 6, 5322–5331. Huang, S.C.-C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., Beatty, W., Love-Gregory, L., Lam, W.Y., O’Neill, C.M., et al. (2014). Cell￾intrinsic lysosomal lipolysis is essential for alternative activation of macro￾phages. Nat. Immunol. 15, 846–855. Hviid, A., Svanstro¨ m, H., and Frisch, M. (2011). Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54. Iliev, I.D., and Leonardi, I. (2017). Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat. Rev. Immunol. 17, 635–646. Jackson, D.N., Panopoulos, M., Neumann, W.L., Turner, K., Cantarel, B.L., Thompson-Snipes, L., Dassopoulos, T., Feagins, L.A., Souza, R.F., Mills, J.C., et al. (2020). Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut. Published online February 28, 2020. https:// doi.org/10.1136/gutjnl-2019-319523. Kaminski, M.M., Sauer, S.W., Klemke, C.-D., Suss, D., Okun, J.G., Krammer, € P.H., and Gulow, K. (2010). Mitochondrial reactive oxygen species control € T cell activation by regulating IL-2 and IL-4 expression: mechanism of cipro- floxacin-mediated immunosuppression. J. Immunol. 184, 4827–4841. Khaloian, S., Rath, E., Hammoudi, N., Gleisinger, E., Blutke, A., Giesbertz, P., Berger, E., Metwaly, A., Waldschmitt, N., Allez, M., and Haller, D. (2020). Mito￾chondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut. Published online February 28, 2020. https://doi.org/10.1136/gutjnl-2019-319514. ll Cell Metabolism 32, October 6, 2020 521 Perspective
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有