正在加载图片...
1542 工程科学学报,第41卷,第12期 [5]Wang J,Chatrathi M P,Tian B M,et al.Microfabricated 3480 electrophoresis chips for simultaneous bioassays of glucose,uric [17]Lin X Y,Zhang H,Huang S,et al.Electrochemical determination acid,ascorbic acid,and acetaminophen.Anal Chem,2000,72(11): of levodopa using ZnO nanowire arrays/graphene foam.Chin J 2514 Eng,2016,38(9):1306 [6]Liu X,Jiang H,Lei J P,et al.Anodic electrochemiluminescence of (林轩宇,张虹,黄硕,等.氧化锌纳米线阵列/泡沫石墨烯电化学 CdTe quantum dots and its energy transfer for detection of 检测左旋多巴.工程科学学报,2016,38(9):1306) catechol derivatives.Anal Chem,2007,79(21):8055 [18]Zhou L F,Qiu H M,Xu M,et al.Synthesis and electrochemical [7]Ren X,Zhang T,Wu D,et al.Increased electrocatalyzed properties of graphene/MnOz composites.Chin J Eng,2016, performance through high content potassium doped graphene 38(9):1300 matrix and aptamer tri infinite amplification labels strategy:highly (周龙斐,邱红梅,徐美,等.石墨烯/二氧化锰复合材料的制备及 sensitive for matrix metalloproteinases-2 detection.Biosens 其电化学性能.工程科学学报,2016,38(9):1300) Bioelectron,2017,94:694 [19]Shi X L,Dai Z X,Xu LL,et al.Effects of hydrothermal treatment [8]Zhou S H,Shi HY,Feng X,et al.Design of templated nanoporous temperature on properties of titanium nitride coating.Trans Mater carbon electrode materials with substantial high specific surface Heat Treat,,2017,38(1):165 area for simultaneous determination of biomolecules.Biosens (史兴岭,戴智鑫,徐玲利,等,水热处理温度对渗氨钛陶瓷层性 Bioelectron,2013,42:163 能的影响.材料热处理学报,2017,38(1):165) [9]Darmawan W,Usuki H,Rahayu I S,et al.Wear characteristics of [20]Zhang X,Zhang B,Liu D Y,et al.One-pot synthesis of ternary multilayer-coated cutting tools when milling particleboard.Forest alloy CuFePt nanoparticles anchored on reduced graphene oxide Prod J,2010,60(7-8):615 and their enhanced electrocatalytic activity for both methanol and [10]Zahid R,Masjuki HH,Varman M,et al.Effect of lubricant formic acid oxidation reactions.Electrochim Acta,2015,177:93 formulations on the tribological performance of self-mated doped [21]Kong F Y,Chen T T,Wang J Y,et al.UV-assisted synthesis of DLC contacts:a review.Tribol Lett,2015,58(2):32 tetrapods-like titanium nitride-reduced graphene oxide [11]Kaskel S,Schlichte K,Kratzke T.Catalytic properties of high nanohybrids for electrochemical determination of surface area titanium nitride materials.J Mol Catal A-Chem,2004 chloramphenicol.Sens Actuators B,2016,225:298 208(1-2):291 [22]Wang C Q,Du J,Wang H W,et al.A facile electrochemical sensor [12]Choi D,Kumta P N.Nanocrystalline TiN derived by a two-step based on reduced graphene oxide and Au nanoplates modified halide approach for electrochemical capacitors.Elecrochem Soc. glassy carbon electrode for simultaneous detection of ascorbic 2006,153(12):A2298 acid,dopamine and uric acid.Sens Actuators B,2014,204:302 [13]Cui Z M,Zu C X,Zhou W D,et al.Mesoporous titanium nitride- [23]Liu X F,Zhang L Wei S P.et al.Overoxidized enabled highly stable lithium-sulfur batteries.Ady Mater,2016, polyimidazole/graphene oxide copolymer modified electrode for 28(32):6926 the simultaneous determination of ascorbic acid,dopamine,uric [14]Dong S M,Chen X,Gu L,et al.A biocompatible titanium nitride acid,guanine and adenine.Biosens Bioelectron,2014,57:232 nanorods derived nanostructured electrode for biosensing and [24]Wang S Y,Zhang W,Zhong X,et al.Simultaneous determination bioelectrochemical energy conversion.Biosens Bioelectron,2011, of dopamine,ascorbic acid and uric acid using a multi-walled 26(10):4088 carbon nanotube and reduced graphene oxide hybrid functionalized [15]Kong F Y,Gu S X,Wang J Y,et al.Facile green synthesis of by PAMAM and Au nanoparticles.Anal Methods,2015,7(4): graphene-titanium nitride hybrid nanostructure for the 1471 simultaneous determination of acetaminophen and 4-aminophenol. [25]Zhang X,Zhang Y C,Ma L X.One-pot facile fabrication of Sens Actuators B,2015,213:397 graphene-zinc oxide composite and its enhanced sensitivity for [16]Zhu JX.Yang D.Yin Z Y,et al.Graphene and graphene-based simultaneous electrochemical detection of ascorbic acid,dopamine materials for energy storage applications.Small,2014,10(17): and uric acid.Sens Actuators B,2016,227:488Wang  J,  Chatrathi  M  P,  Tian  B  M,  et  al.  Microfabricated electrophoresis  chips  for  simultaneous  bioassays  of  glucose,  uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72(11): 2514 [5] Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe  quantum  dots  and  its  energy  transfer  for  detection  of catechol derivatives. Anal Chem, 2007, 79(21): 8055 [6] Ren  X,  Zhang  T,  Wu  D,  et  al.  Increased  electrocatalyzed performance  through  high  content  potassium  doped  graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive  for  matrix  metalloproteinases-2  detection. Biosens Bioelectron, 2017, 94: 694 [7] Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon  electrode  materials  with  substantial  high  specific  surface area  for  simultaneous  determination  of  biomolecules. Biosens Bioelectron, 2013, 42: 163 [8] Darmawan W, Usuki H, Rahayu I S, et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard. Forest Prod J, 2010, 60(7-8): 615 [9] Zahid  R,  Masjuki  H  H,  Varman  M,  et  al.  Effect  of  lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol Lett, 2015, 58(2): 32 [10] Kaskel  S,  Schlichte  K,  Kratzke  T.  Catalytic  properties  of  high surface area titanium nitride materials. J Mol Catal A-Chem, 2004, 208(1-2): 291 [11] Choi  D,  Kumta  P  N.  Nanocrystalline  TiN  derived  by  a  two-step halide approach for electrochemical capacitors. J Electrochem Soc, 2006, 153(12): A2298 [12] Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride￾enabled  highly  stable  lithium-sulfur  batteries. Adv Mater,  2016, 28(32): 6926 [13] Dong S M, Chen X, Gu L, et al. A biocompatible titanium nitride nanorods  derived  nanostructured  electrode  for  biosensing  and bioelectrochemical energy conversion. Biosens Bioelectron, 2011, 26(10): 4088 [14] Kong  F  Y,  Gu  S  X,  Wang  J  Y,  et  al.  Facile  green  synthesis  of graphene-titanium  nitride  hybrid  nanostructure  for  the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B, 2015, 213: 397 [15] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials  for  energy  storage  applications. Small,  2014,  10(17): [16] 3480 Lin X Y, Zhang H, Huang S, et al. Electrochemical determination of  levodopa  using  ZnO  nanowire  arrays/graphene  foam. Chin J Eng, 2016, 38(9): 1306 (林轩宇, 张虹, 黄硕, 等. 氧化锌纳米线阵列/泡沫石墨烯电化学 检测左旋多巴. 工程科学学报, 2016, 38(9):1306 ) [17] Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties  of  graphene/MnO2 composites. Chin J Eng,  2016, 38(9): 1300 (周龙斐, 邱红梅, 徐美, 等. 石墨烯/二氧化锰复合材料的制备及 其电化学性能. 工程科学学报, 2016, 38(9):1300 ) [18] Shi X L, Dai Z X, Xu L L, et al. Effects of hydrothermal treatment temperature on properties of titanium nitride coating. Trans Mater Heat Treat, 2017, 38(1): 165 (史兴岭, 戴智鑫, 徐玲利, 等. 水热处理温度对渗氮钛陶瓷层性 能的影响. 材料热处理学报, 2017, 38(1):165 ) [19] Zhang  X,  Zhang  B,  Liu  D  Y,  et  al.  One-pot  synthesis  of  ternary alloy  CuFePt  nanoparticles  anchored  on  reduced  graphene  oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta, 2015, 177: 93 [20] Kong F Y, Chen T T, Wang J Y, et al. UV-assisted synthesis of tetrapods-like  titanium  nitride-reduced  graphene  oxide nanohybrids  for  electrochemical  determination  of chloramphenicol. Sens Actuators B, 2016, 225: 298 [21] Wang C Q, Du J, Wang H W, et al. A facile electrochemical sensor based  on  reduced  graphene  oxide  and  Au  nanoplates  modified glassy  carbon  electrode  for  simultaneous  detection  of  ascorbic acid, dopamine and uric acid. Sens Actuators B, 2014, 204: 302 [22] Liu  X  F,  Zhang  L,  Wei  S  P,  et  al.  Overoxidized polyimidazole/graphene  oxide  copolymer  modified  electrode  for the  simultaneous  determination  of  ascorbic  acid,  dopamine,  uric acid, guanine and adenine. Biosens Bioelectron, 2014, 57: 232 [23] Wang S Y, Zhang W, Zhong X, et al. Simultaneous determination of  dopamine,  ascorbic  acid  and  uric  acid  using  a  multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by  PAMAM  and  Au  nanoparticles. Anal Methods,  2015,  7(4): 1471 [24] Zhang  X,  Zhang  Y  C,  Ma  L  X.  One-pot  facile  fabrication  of graphene-zinc  oxide  composite  and  its  enhanced  sensitivity  for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2016, 227: 488 [25] · 1542 · 工程科学学报,第 41 卷,第 12 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有