正在加载图片...
C.H. Henager Jr et al / Journal of Nuclear Materials 367-370(2007)1139-1143 l143 3. 2. Coating microstructures Nishio, B. Riccardi, M.S. Tillack, Fusion Eng. Des. 55 2001)55 Polymer coatings are made with the same simple 4]S. Sharafat, N. Ghoniem, S. Zinkle, J. Nucl. Mater. 329-333 processing as for the polymer joints. The liquid (2004)1429 5L.L. Snead, T. Inoki, Y Katoh, T. Taguchi, R H. Jones, A slurry is prepared and the coating is applied using Kohyama, N. Igawa, Advances in Science and Technology dip-coating techniques. Pyrolysis is carried out in 33(10th International Ceramics Congress 2002, Part D)129 air, nitrogen, or argon at 973-1473K depending on the substrate. Fig. 6 shows coatings in polished 6J. Sha, A. Kohyama,Y. Katoh, Plasma Sci. Technol. 5(5) 2003)1965 cross-sections after pyrolysis on SiC/SiC coupons [7 C.A. Lewinsohn, M. Singh, C H. Henager Jr, Ceram. Trans. The coatings have varying degrees of porosities that 138(2003)201 are due in part to the mass loss during pyrolysis 8]Y. Katoh, A Kohyama, T Hinoki, L L. Snead, Fusion Sci. The Al/AlO3 coating is fairly dense but the Al/ Technol.44(2003)155 SiC coating is porous. Although such coatings have 9]RH. Jones, Ceramic Engineering and Science Proceedings yet to be studied under fusion relevant conditions it 24(2003)261 [OT Hino, T. Jinushi, Y. Hirohata, M. Hashiba, Y. Yamauchi is apparent that simple processing using PHMS Y Katoh, A Kohyama, Fusion Sci. Technol. 43(2003)184 filled with ceramic particles can be used to synthe- [11]M. Ferraris, P. Appendino, V. Casalegno, F. Smeacetto, M size protective coatings for SiC/SiC composites Salvo, Advances in Science and Technology 33(10th Inter. These coatings are compliant and slightly porous national Ceramics Congress 2002)(2003) but are strongly bonded to the ceramIc surface [12]B. Riccardi, C.A. Nannetti, T. Petrisor, M. Sacchetti, ind can act as thermal barriers. The processing is [13]K. Shimoda, N. Eiza, J.-S. Park, T. Hinoki, A. Kohyama,S extremely simple and robust. Kondo, Mater. Trans. 47(2006)1204 [14]T. Hinoki, A. Kohyama, Annales de Chimie: Science des 4. Conclusions Materiaux 30(2005)659. [5]T. Hino, E. Hayashishita, Y. Yamauchi, M. Hashiba, Y Hirohata, A. Kohyama, Fusion Eng. Des. 73(2005)51 New developments in preceramic polymers have [16]CA. Lewinsohn, R.H. Jones, P. Colombo, B. Riccardi, been introduced to show that simple joints and coat J.NucL. Mater.307-311(2002)1232 ings may be produced using simple materials and [17] C.A. Lewinsohn, R H. Jones, T. Nozawa, M. Kotani, Y. processing. Since fusion engineering is in its infancy Katoh, A. Kohyama, M. Singh, Ceramic Engineering and Science Proceedings 22(2001)621 and no single coating or joining technology is the [18]P Colombo, B Riccardi, A Donato, G. Scarinci, I. Nuc clear favorite at this point, new technologies should Mater.278(2000)12 continue to be developed to allow as much diversity [19]YD. Blum, D.B. MacQueen, Surface Coatings Intern in synthesis and processing as possible. This will tional, Part B: Coatings Transactions 84(2001)27. ensure that many choices are available as required [20J Y.D. Blum, H.P. Chen, D.B. MacQueen, S M.Johnson to meet the needs of fusion projects, such as test (1999)281 blanket modules or future uses of Sic-based materi- [21]Y D Blum, S M. Johnson, M I Gusman, Hydridosiloxanes als. Solid-state joints appear to be very strong and as precursors to ceramic products, U.S. Patent 5,635, 250 in comparison to reaction bonded joints, may have an advantage of reduced glassy phases or residual [22]SM. Johnson, Y D. Blum, C. Kanazawa, H.. Wu, Met. []Y D. Blum, D B MacQueen, H.-J. Kleebe, J. Eur. Ceram. Soc.25(2005)143 References 224]C. Toy, E. Savrun, C. Lewinsohn, C. Henager, Ceram. Trans.103(200056 UT. Hino, Y. Hirohata, Y. Yamauchi, M [25]R. Radhakrishnan, S. Bhaduri, C H. Henager Jr, JOM Y. Katoh. Y. Lee, T. Jinushi, M H. Yoshida, S. Sengoku, K [26] C H. Henager Jr,R H. Jones, Ceram. Trans. 77(1997)117. usama,K. Yamaguchi, T. Muroga, J. Nucl. Mater. 329- 27]R. Radhakrishnan, C H. Henager Jr, J.L. Brimhall, SB 333(2004)673 Bhaduri, Scripta Mater. 34(1996)1809 [2]BA Pint, K.L. More, H M. Meyer, J.R. DiStefano, Fusion [28]S Modena, G.D. Soraru,Y. Blum, R. Raj, J. Am. Ceram. Sci. Technol. 47(2005)851 Soc.88(2005)339 3]AR. Raffray, R. Jones, G. Aiello, M. Billone, L. Giancarli 29]F. Kolar, V. Machovic, J. Svitilova, L. Borecka, Mater. H. Golfier, A. Hasegawa, Y. Katoh, A. Kohyama, Chem.Phys.86(2004)883.2. Coating microstructures Polymer coatings are made with the same simple processing as for the polymer joints. The liquid slurry is prepared and the coating is applied using dip-coating techniques. Pyrolysis is carried out in air, nitrogen, or argon at 973–1473 K depending on the substrate. Fig. 6 shows coatings in polished cross-sections after pyrolysis on SiC/SiC coupons. The coatings have varying degrees of porosities that are due in part to the mass loss during pyrolysis. The Al/Al2O3 coating is fairly dense but the Al/ SiC coating is porous. Although such coatings have yet to be studied under fusion relevant conditions it is apparent that simple processing using PHMS filled with ceramic particles can be used to synthe￾size protective coatings for SiC/SiC composites. These coatings are compliant and slightly porous but are strongly bonded to the ceramic surface and can act as thermal barriers. The processing is extremely simple and robust. 4. Conclusions New developments in preceramic polymers have been introduced to show that simple joints and coat￾ings may be produced using simple materials and processing. Since fusion engineering is in its infancy and no single coating or joining technology is the clear favorite at this point, new technologies should continue to be developed to allow as much diversity in synthesis and processing as possible. This will ensure that many choices are available as required to meet the needs of fusion projects, such as test blanket modules or future uses of SiC-based materi￾als. Solid-state joints appear to be very strong and, in comparison to reaction bonded joints, may have an advantage of reduced glassy phases or residual Si. References [1] T. Hino, Y. Hirohata, Y. Yamauchi, M. Hashiba, A. Kohyama, Y. Katoh, Y. Lee, T. Jinushi, M. Akiba, K. Nakamura, H. Yoshida, S. Sengoku, K. Tsuzuki, Y. Kusama, K. Yamaguchi, T. Muroga, J. Nucl. Mater. 329– 333 (2004) 673. [2] B.A. Pint, K.L. More, H.M. Meyer, J.R. DiStefano, Fusion Sci. Technol. 47 (2005) 851. [3] A.R. Raffray, R. Jones, G. Aiello, M. Billone, L. Giancarli, H. Golfier, A. Hasegawa, Y. Katoh, A. Kohyama, Nishio, B. Riccardi, M.S. Tillack, Fusion Eng. Des. 55 (2001) 55. [4] S. Sharafat, N. Ghoniem, S. Zinkle, J. Nucl. Mater. 329–333 (2004) 1429. [5] L.L. Snead, T. Inoki, Y. Katoh, T. Taguchi, R.H. Jones, A. Kohyama, N. Igawa, Advances in Science and Technology 33 (10th International Ceramics Congress 2002, Part D) 129 (2003). [6] J. Sha, A. Kohyama, Y. Katoh, Plasma Sci. Technol. 5 (5) (2003) 1965. [7] C.A. Lewinsohn, M. Singh, C.H. Henager Jr., Ceram. Trans. 138 (2003) 201. [8] Y. Katoh, A. Kohyama, T. Hinoki, L.L. Snead, Fusion Sci. Technol. 44 (2003) 155. [9] R.H. Jones, Ceramic Engineering and Science Proceedings 24 (2003) 261. [10] T. Hino, T. Jinushi, Y. Hirohata, M. Hashiba, Y. Yamauchi, Y. Katoh, A. Kohyama, Fusion Sci. Technol. 43 (2003) 184. [11] M. Ferraris, P. Appendino, V. Casalegno, F. Smeacetto, M. Salvo, Advances in Science and Technology 33(10th Inter￾national Ceramics Congress 2002) (2003). [12] B. Riccardi, C.A. Nannetti, T. Petrisor, M. Sacchetti, J. Nucl. Mater. 307–311 (2002) 1237. [13] K. Shimoda, N. Eiza, J.-S. Park, T. Hinoki, A. Kohyama, S. Kondo, Mater. Trans. 47 (2006) 1204. [14] T. Hinoki, A. Kohyama, Annales de Chimie: Science des Materiaux 30 (2005) 659. [15] T. Hino, E. Hayashishita, Y. Yamauchi, M. Hashiba, Y. Hirohata, A. Kohyama, Fusion Eng. Des. 73 (2005) 51. [16] C.A. Lewinsohn, R.H. Jones, P. Colombo, B. Riccardi, J. Nucl. Mater. 307–311 (2002) 1232. [17] C.A. Lewinsohn, R.H. Jones, T. Nozawa, M. Kotani, Y. Katoh, A. Kohyama, M. Singh, Ceramic Engineering and Science Proceedings 22 (2001) 621 . [18] P. Colombo, B. Riccardi, A. Donato, G. Scarinci, J. Nucl. Mater. 278 (2000) 127. [19] Y.D. Blum, D.B. MacQueen, Surface Coatings Interna￾tional, Part B: Coatings Transactions 84 (2001) 27. [20] Y.D. Blum, H.P. Chen, D.B. MacQueen, S.M. Johnson, Materials Research Society Symposium Proceedings 576 (1999) 281. [21] Y.D. Blum, S.M. Johnson, M.I. Gusman, Hydridosiloxanes as precursors to ceramic products, U.S. Patent 5,635,250, June 3, 1997. [22] S.M. Johnson, Y.D. Blum, C. Kanazawa, H.-J. Wu, Met. Mater. 4 (6) (1998) 1119. [23] Y.D. Blum, D.B. MacQueen, H.-J. Kleebe, J. Eur. Ceram. Soc. 25 (2005) 143. [24] C. Toy, E. Savrun, C. Lewinsohn, C. Henager, Ceram. Trans. 103 (2000) 561. [25] R. Radhakrishnan, S. Bhaduri, C.H. Henager Jr., JOM 49 (1997) 41. [26] C.H. Henager Jr., R.H. Jones, Ceram. Trans. 77 (1997) 117. [27] R. Radhakrishnan, C.H. Henager Jr., J.L. Brimhall, S.B. Bhaduri, Scripta Mater. 34 (1996) 1809. [28] S. Modena, G.D. Soraru, Y. Blum, R. Raj, J. Am. Ceram. Soc. 88 (2005) 339. [29] F. Kolar, V. Machovic, J. Svitilova, L. Borecka, Mater. Chem. Phys. 86 (2004) 88. C.H. Henager Jr. et al. / Journal of Nuclear Materials 367–370 (2007) 1139–1143 1143
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有