正在加载图片...
V. L. Kuznetsov, A. N. Usoltseva, and l N. mazo Eqs.(2)and (3)combined with the phase diagram approach can be used for the description of different scenarios of carbon (11)and/or SiC(12) deposit formation and for the development of the main principles of catalyst and promoter design ACKNOWLEDGMENTS inancial support by INTAS (01-254, YSF 03-55-1816), RFBR(02-03- : 96), and CRDF and Department of Education of RF(No. -008-X1)under REFERENCES 1. Kuznetsov. V L. Usoltseva. A.N. Chuvilin. A L. Obraztsova. E D. and Bonard, J -M.(2001)Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of single-wall carbon nanotubes. Phys. Rev. B. 64: 5401-5408. 2. 2004)Special issue on Advances in Nanotubes. MRS Bulletin, 4: 237-285 3. Chrysanthou, A and Grieveson, P(1991) Formation of silicon carbide whiskers and their microstructure. Mater. Sci.. 26: 3463-3476 4. Satishkumar, B. C, Govindaraj, A, Sen, R, and Rao, C N.R. (1998)Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem. Phys 5. Cheng, H M.Li, F. Su, G, Pan, H.Y., He, L.L., Sun, X, and Dresselhaus, M.s. (1998)Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Left, 72: 3282-3284 6. Nikolaev, P, Bronikowski, M, Bradley, R, Rohmund, F, Colbert, D, Smith, K and Smalley, R E.(1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 313: 91-97 7. Zhou, W Ooi, Y, Russo, R, Papanck, P, Luzzi, D, Fischer, J, Bronikowski, M Willis, P, and Smalley, R E.(2001)Structural characterization and diameter dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem. Phys. Leff, 350: 6-14 8. Bacsa, R.R., Laurent, Ch, Peigney, A, Vaugien, T, Flahaut, E, Bacsa, w.S., and Rousset, A.(2002)(Mg, Co)o solid solutions precursors for the large-scale synthesis of carbon nanotubes by catalytic chemical vapor deposition. J. Am Ceram. soc.,85:2666-2669 9. Govindaraj, A, Flahaut, E, Laurent, Ch, Peigney, A, Rousset, A, and ao, C.N.R.(1999)An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg,O4 (M=Fe, Co, Ni) spinel catalysts. J. Mater. Res, 14: 2567-2576 10. Flahaut, E, Govindaraj, A, Peigney, A, Laurent, Ch, Rousset, A,and Rao, CNR.(1999) Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solidEqs. (2) and (3) combined with the phase diagram approach can be used for the description of different scenarios of carbon (11) and/or SiC (12) deposit formation and for the development of the main principles of catalyst and promoter design. ACKNOWLEDGMENTS Financial support by INTAS (01-254, YSF 03-55-1816), RFBR (02-03- 32296), and CRDF and Department of Education of RF (No.-008-X1) under marked grants is gratefully acknowledged. REFERENCES 1. Kuznetsov, V.L., Usoltseva, A.N., Chuvilin, A.L., Obraztsova, E.D., and Bonard, J.-M. (2001) Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of single-wall carbon nanotubes. Phys. Rev. B, 64: 5401– 5408. 2. 2004) Special issue on Advances in Nanotubes. MRS Bulletin, 4: 237– 285. 3. Chrysanthou, A. and Grieveson, P. (1991) Formation of silicon carbide whiskers and their microstructure. J. Mater. Sci., 26: 3463– 3476. 4. Satishkumar, B.C., Govindaraj, A., Sen, R., and Rao, C.N.R. (1998) Single-walled nanotubes by the pyrolysis of acetylene – organometallic mixtures. Chem. Phys. Lett., 293: 47 – 52. 5. Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S. (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 72: 3282– 3284. 6. Nikolaev, P., Bronikowski, M., Bradley, R., Rohmund, F., Colbert, D., Smith, K., and Smalley, R.E. (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 313: 91– 97. 7. Zhou, W., Ooi, Y., Russo, R., Papanck, P., Luzzi, D., Fischer, J., Bronikowski, M., Willis, P., and Smalley, R.E. (2001) Structural characterization and diameter￾dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem. Phys. Lett., 350: 6 – 14. 8. Bacsa, R.R., Laurent, Ch., Peigney, A., Vaugien, T., Flahaut, E., Bacsa, W.S., and Rousset, A. (2002) (Mg, Co)O solid solutions precursors for the large-scale synthesis of carbon nanotubes by catalytic chemical vapor deposition. J. Am. Ceram. Soc., 85: 2666– 2669. 9. Govindaraj, A., Flahaut, E., Laurent, Ch., Peigney, A., Rousset, A., and Rao, C.N.R. (1999) An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1-xMxAl2O4 (M ¼ Fe, Co, Ni) spinel catalysts. J. Mater. Res., 14: 2567– 2576. 10. Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., Rousset, A., and Rao, C.N.R. (1999) Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett., 300: 236– 242. 128 V. L. Kuznetsov, A. N. Usoltseva, and I. N. Mazov
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有