16. R. Viswanathan and J M. Tanzosh, boiler Mater 32. F. Vivier, A.F. Gourgues-Lorenzon, and J. Besson, Creep Rupture of er Plants-Steamside Oxidation, J. 9CrlMoNbV Steel at 500@C: Base Metal and Welded Joint, Nucl. Eng Des,2010.240,p2704270 17.J.Cadek,V. Sustek, and M. Pahutova, An Analysis of a Set of Creep 33. ASME SA-213M-2001, Seamless Stainless Steel Tubes for Boiler and Data for a 9Cr-IMo-0 2V(P91 type)Steel, Mater. Sci. Eng. 4, 199 Heat Exchanger, ASME, Washington, DC, 2001 225,p22-28 18. V. Sklenicka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursik, and Inclusions-Micrographic Method Using Standard Diagrams. Iso, Behavior of 9-12%Cr Power Plant Geneve. Switze 998 Steels, Mater. Charact., 2003, 51, p 35-48 35. ASME SFA-528M-2007, Low-Alloy Steel Electrodes and Rods for 19. B Fournier, M. Salvi, F. Dalle, Y De Carlan, C. Caes et al., Lifetime Gas Shielded Are Welding, ASME, Washington, DC, 2007 Prediction of 9-12%Cr Martensitic Ste 36. ASTM E8-04, Standard Test Methods for Tension Testing of Metallic at High Temperature, Int. J. Fatigue, 2010, 32, p 971-9 20. A Kumar, K. Laha, T Jayakumar, K. Bhanu Sankara Rao, and B Raj, 37. ASTM E290-97a(2004), Standard Test Methods for Bend Testing of Material for Ductility, ASTM, West Conshohocken, 2004 Ferritic Steel by Ultrasonic Measurements, Metall. Mater. Trans. A, 38. ISO 783-1999, Metallic Materials-Tensile Testing at Elevated Tem- 2002,33A,p1617- perature, ISO, Geneve, Switzerland, 1999 21. V. Homolova, J. Janovec, P. Zahumensky, and A. Vyrostkova, 39. ASTM E139-06, Standard Test Methods for Conducting Creep, Creep- Phases in P91 Steel, Mater: Sci. Eng. 4, 2003, 349, p Ipture, and Stress-Rupture Tests of Metallic Materials, ASTM, West Conshohocken. 2006 2. D.R.G. Mitchell and S Sulaiman, Advanced TEM Specimen Prepa 40. GB 5310-2008, Seamless Steel Tubes and Pipes for High Pressure ation Methods for Replication of P91 Steel, Mater Charact, 2006, 56 Boiler, SAC, Beijing, 2008 Welding Consumables for p91 Steels for the Power Generation 23. A K. Roy, D. Maitra, and P. Kumar, The Role of Silicon Content on Industry, Metrode Products Ltd Environmental Degradations of T91 Steels, J. Mater. Eng. Perform. 42. G.G. Shu, J N. Liu, C.Z. Shi, Z P. Wang, and Y F. Zhao, Microstruc- tural Pro and Engineering Applications of T/P9l Steel used in and Proton-Irradiated T91 Ferritic/Martensitic Steel, J. Nucl. Mater Supercritical Boilers, Shaanxi Science Technology Press, Xi'an, Shaanxi province. 2006 2007,367-370,p440-445 43. W. Ostwald, Lehrbuch der allgemeinen Chemie, vol. 2, part 1, Leipzig, 25. D.C. Foley, K.T. Hartwig, S.A. Maloy, P Hosemann, and x. Zhang, Germany, 1896 Grain Refinement of T91 Alloy by Equal Channel Angular Pressing, JMcl. Mater,2009,389,p221-224 44. Z.F. Hu and Z.G. Yang, An Investigation of the Embrittlement in X20CrMoV121 Power Plant Steel after Long-Term Service Exposure 6. C.R. Das, S.K. Albert, A.K. Bhaduri, G. Srinivasan, and B.S. Mur Effect of Prior microstructure on microstructure and mechanical at Elevated Temperature, Mater: Sci. Eng. A, 2004, 383, P 224-228 roperties of Modified 9Cr-lMo Steel Weld Joints, Mater: Sci. Eng. A, 45. Z.F. Hu and Z.G. Yang, Identification of the Precipitates by TEM and 008,477,p185-192 EDS in X20CrMoV121 after Long- Term Service at Elevated Temperature, J. Mater. Eng. Perform., 2003, 12, P 106-1l1 27. M. Sireesha, K Shaju Albert, and S Sundaresan, Microstructure and 46. F.R. Larson and J. Miller, A Time-Temperature Relationship for Mechanical Properties of Weld Fusion Zones in Modified 9Cr-lMo Steel, J. Mater: Eng. Perform, 2001, 10, p 320-33 Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765-775 28. A. Thomas, B. Pathiraj, and P. Veron, Feature Tests on Welded D. Jandova, J. Kasl, and V. Kanta, Creep Resistance of Similar and Dissimilar Weld Joints of P91 Steel, Mater: High. Temp., 2006, 23, Residual Stress Evaluation, Eng. Fract. Mech., 2007, 74, p 969-979 29. S. Spigarelli and E. Quadrini, Analysis of the Creep Behaviour of 48. M.M. Abu-Khader. Recent Advances in Nuclear Power: A Review Pog.Mc. Energ,2009,51,p225-235 Modified P91(9Cr-IMo-NbV) Welds, Mater. Des., 2002, 23, p 54 552 49. D.T. Ingersoll, Deliberately Small Reactors and the Second Nuclear 30. Y.K. Li, H. Hongo, M. Tabuch Era, Prog. Nucl. Energ., 2009, 51, P 589-603 Evaluation of Creep Damage in Heat Affected Zone of Thick Welded 50. M. Lenzen, Life Cycle Energy and Greenhouse Gas Joint for Mod.9Cr-lMo Steel, Int. J. Pres. Ves. Pip, 2009, 86, p 58 Nuclear Energy: A Review, Energ. Convers. Manag p2178-2199 31. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanat 51. M. Piera, A. Lafuente, A. Abanades, and J M. Martinez-Val, Hybrid Creep Damage Evaluation of 9Cr-1Mo-V-Nb Steel Welded Joints Reactors: Nuclear Breeding or Energy Production?, Energ. Convers. Showing Type IV Fracture, Int J. Pres Ves. Pip, 2006, 83, p 63-7 manage,2010,51,p1758-1763 Journal of Materials Engineering and Performance Volume 21(7)July 2012--131916. R. Viswanathan, J. Sarven, and J.M. Tanzosh, Boiler Materials for Ultra-Supercritical Coal Power Plants—Steamside Oxidation, J. Mater. Eng. Perform., 2006, 15, p 255–274 17. J. Cˇ adek, V. Sˇustek, and M. Pahutova´, An Analysis of a Set of Creep Data for a 9Cr-1Mo-0.2V (P91 type) Steel, Mater. Sci. Eng. A, 1997, 225, p 22–28 18. V. Sklenicˇka, K. Kucharˇova´, M. Svoboda, L. Kloc, J. Bursˇı´k, and A. Kroupa, Long-Term Creep Behavior of 9–12%Cr Power Plant Steels, Mater. Charact., 2003, 51, p 35–48 19. B. Fournier, M. Salvi, F. Dalle, Y. De Carlan, C. Cae¨s et al., Lifetime Prediction of 9–12%Cr Martensitic Steels Subjected to Creep-Fatigue at High Temperature, Int. J. Fatigue, 2010, 32, p 971–978 20. A. Kumar, K. Laha, T. Jayakumar, K. Bhanu Sankara Rao, and B. Raj, Comprehensive Microstructural Characterization in Modified 9Cr-1Mo Ferritic Steel by Ultrasonic Measurements, Metall. Mater. Trans. A, 2002, 33A, p 1617–1626 21. V. Homolova´, J. Janovec, P. Za´humensky´, and A. Vy´rostkova´, Influence of Thermal-Deformation History on Evolution of Secondary Phases in P91 Steel, Mater. Sci. Eng. A, 2003, 349, p 306–312 22. D.R.G. Mitchell and S. Sulaiman, Advanced TEM Specimen Preparation Methods for Replication of P91 Steel, Mater. Charact., 2006, 56, p 49–58 23. A.K. Roy, D. Maitra, and P. Kumar, The Role of Silicon Content on Environmental Degradations of T91 Steels, J. Mater. Eng. Perform., 2008, 17, p 612–619 24. Z. Jiao, N. Ham, and G.S. Was, Microstructure of Helium-Implanted and Proton-Irradiated T91 Ferritic/Martensitic Steel, J. Nucl. Mater., 2007, 367–370, p 440–445 25. D.C. Foley, K.T. Hartwig, S.A. Maloy, P. Hosemann, and X. Zhang, Grain Refinement of T91 Alloy by Equal Channel Angular Pressing, J. Nucl. Mater., 2009, 389, p 221–224 26. C.R. Das, S.K. Albert, A.K. Bhaduri, G. Srinivasan, and B.S. Murty, Effect of Prior Microstructure on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel Weld Joints, Mater. Sci. Eng. A, 2008, 477, p 185–192 27. M. Sireesha, K. Shaju Albert, and S. Sundaresan, Microstructure and Mechanical Properties of Weld Fusion Zones in Modified 9Cr-1Mo Steel, J. Mater. Eng. Perform., 2001, 10, p 320–330 28. A. Thomas, B. Pathiraj, and P. Veron, Feature Tests on Welded Components at Higher Temperatures—Material Performance and Residual Stress Evaluation, Eng. Fract. Mech., 2007, 74, p 969–979 29. S. Spigarelli and E. Quadrini, Analysis of the Creep Behaviour of Modified P91 (9Cr-1Mo-NbV) Welds, Mater. Des., 2002, 23, p 547– 552 30. Y.K. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod.9Cr-1Mo Steel, Int. J. Pres. Ves. Pip., 2009, 86, p 585– 592 31. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Creep Damage Evaluation of 9Cr-1Mo-V-Nb Steel Welded Joints Showing Type IV Fracture, Int. J. Pres. Ves. Pip., 2006, 83, p 63–71 32. F. Vivier, A.F. Gourgues-Lorenzon, and J. Besson, Creep Rupture of a 9Cr1MoNbV Steel at 500C: Base Metal and Welded Joint, Nucl. Eng. Des., 2010, 240, p 2704–2709 33. ASME SA-213M-2001, Seamless Stainless Steel Tubes for Boiler and Heat Exchanger, ASME, Washington, DC, 2001 34. ISO 4967-1998, Steel—Determination of Content of Nonmetallic Inclusions—Micrographic Method Using Standard Diagrams. ISO, Gene`ve, Switzerland, 1998 35. ASME SFA-5.28M-2007, Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding, ASME, Washington, DC, 2007 36. ASTM E8-04, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, 2004 37. ASTM E290-97a(2004), Standard Test Methods for Bend Testing of Material for Ductility, ASTM, West Conshohocken, 2004 38. ISO 783-1999, Metallic Materials—Tensile Testing at Elevated Temperature, ISO, Gene`ve, Switzerland, 1999 39. ASTM E139-06, Standard Test Methods for Conducting Creep, CreepRupture, and Stress-Rupture Tests of Metallic Materials, ASTM, West Conshohocken, 2006 40. GB 5310-2008, Seamless Steel Tubes and Pipes for High Pressure Boiler, SAC, Beijing, 2008 41. Welding Consumables for P91 Steels for the Power Generation Industry, Metrode Products Ltd 42. G.G. Shu, J.N. Liu, C.Z. Shi, Z.P. Wang, and Y.F. Zhao, Microstructural Properties and Engineering Applications of T/P91 Steel used in Supercritical Boilers, Shaanxi Science & Technology Press, Xian, Shaanxi Province, 2006 43. W. Ostwald, Lehrbuch der Allgemeinen Chemie, vol. 2, part 1, Leipzig, Germany, 1896 44. Z.F. Hu and Z.G. Yang, An Investigation of the Embrittlement in X20CrMoV12.1 Power Plant Steel after Long-Term Service Exposure at Elevated Temperature, Mater. Sci. Eng. A, 2004, 383, p 224–228 45. Z.F. Hu and Z.G. Yang, Identification of the Precipitates by TEM and EDS in X20CrMoV12.1 after Long-Term Service at Elevated Temperature, J. Mater. Eng. Perform., 2003, 12, p 106–111 46. F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–775 47. D. Jandova´, J. Kasl, and V. Kanta, Creep Resistance of Similar and Dissimilar Weld Joints of P91 Steel, Mater. High. Temp., 2006, 23, p 165–170 48. M.M. Abu-Khader, Recent Advances in Nuclear Power: A Review, Prog. Nucl. Energ., 2009, 51, p 225–235 49. D.T. Ingersoll, Deliberately Small Reactors and the Second Nuclear Era, Prog. Nucl. Energ., 2009, 51, p 589–603 50. M. Lenzen, Life Cycle Energy and Greenhouse Gas Emissions of Nuclear Energy: A Review, Energ. Convers. Manage., 2008, 49, p 2178–2199 51. M. Piera, A. Lafuente, A. Aba´nades, and J.M. Martinez-Val, Hybrid Reactors: Nuclear Breeding or Energy Production?, Energ. Convers. Manage., 2010, 51, p 1758–1763 Journal of Materials Engineering and Performance Volume 21(7) July 2012—1319