正在加载图片...
Chapter 7 Statistical mechanics When one is faced with a condensed-phase system, usually containing many molecules, that is at or near thermal equilibrium, it is not necessary or even wise to try to describe it in terms of quantum wave functions or even classical trajectories of all of the constituent molecules. Instead, the powerful tools of statistical mechanics allow one to focus on quantities that describe the most important features of the manmy-molecule system. In this Chapter, you will learn about these tools and see some important examples of their application I. Collections of Molecules at or Near equilibrium As noted in Chapter 5, the approach one takes in studying a system composed of a very large number of molecules at or near thermal equilibrium can be quite different from how one studies systems containing a few isolated molecules. In principle, it is possible to conceive of computing the quantum energy levels and wave functions of a collection of many molecules, but doing so becomes impractical once the number of atoms in the system reaches a few thousand or if the molecules have significant intermolecular interactions. Also, as noted in Chapter 5, following the time evolution of such a large number of molecules can be confusing if one focuses on the short-time behavior of any single molecule(e.g, one sees"jerky"changes in its energy, momentum, and angular momentum). By examining, instead, the long-time average behavior of each molecule or, alternatively, the average properties of a significantly large number of PAGE 1PAGE 1 Chapter 7. Statistical Mechanics When one is faced with a condensed-phase system, usually containing many molecules, that is at or near thermal equilibrium, it is not necessary or even wise to try to describe it in terms of quantum wave functions or even classical trajectories of all of the constituent molecules. Instead, the powerful tools of statistical mechanics allow one to focus on quantities that describe the most important features of the many-molecule system. In this Chapter, you will learn about these tools and see some important examples of their application. I. Collections of Molecules at or Near Equilibrium As noted in Chapter 5, the approach one takes in studying a system composed of a very large number of molecules at or near thermal equilibrium can be quite different from how one studies systems containing a few isolated molecules. In principle, it is possible to conceive of computing the quantum energy levels and wave functions of a collection of many molecules, but doing so becomes impractical once the number of atoms in the system reaches a few thousand or if the molecules have significant intermolecular interactions. Also, as noted in Chapter 5, following the time evolution of such a large number of molecules can be “confusing” if one focuses on the short-time behavior of any single molecule (e.g., one sees “jerky” changes in its energy, momentum, and angular momentum). By examining, instead, the long-time average behavior of each molecule or, alternatively, the average properties of a significantly large number of
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有