正在加载图片...
第14卷第2期 智能系统学报 Vol.14 No.2 2019年3月 CAAI Transactions on Intelligent Systems Mar.2019 D0:10.11992/tis.201712024 网络出版地址:http:/kns.cnki.net/kcms/detail/23.1538.TP.20180507.0952.002.html 金属腐蚀区域图像增强算法研究 雷芳,熊建斌2,张磊,郭斯羽 (1.广东石油化工学院计算机与电子信息学院,广东茂名525000,2.广东技术师范学院自动化学院,广东广 州510665:3.湖南大学电气与信息工程学院,湖南长沙410082) 摘要:针对金属腐蚀区域图像中存在暗细节对比度不高、光照不均匀及颜色特征需保护的问题,提出一种在 HSI模型下的多尺度细节自适应增强与同态滤波的增强算法。首先,对RGB腐蚀图像进行色彩空间变换,保 留其中的色调和饱和度分量不变,对亮度分量进行增强。然后,通过小波变换进行多尺度细节自适应增强,提 升细节对比度并作分块同态滤波,改善光照不均的影响,获得增强后的腐蚀图像。实验结果表明,所提方法增 加了腐蚀暗细节的对比度,提高了金属腐蚀区域图像的整体亮度并保证了色彩信息的不失真。 关键词:金属腐蚀图像:HSI模型:多尺度:细节自适应增强;分块同态滤波 中图分类号:TP391文献标志码:A文章编号:1673-4785(2019)02-0385-08 中文引用格式:雷芳,熊建斌,张磊,等.金属腐蚀区域图像增强算法研究.智能系统学报,2019,14(2):385-392. 英文引用格式:LEI Fang,XIONG Jianbin,.ZHANG Lei,.etal.Image enhancement algorithm in metal corrosion areaJ.CAAl transactions on intelligent systems,2019,14(2):385-392. Image enhancement algorithm in metal corrosion area LEI Fang',XIONG Jianbin',ZHANG Lei',GUO Siyu' (1.College of Computer and Electronic Information,Guangdong University of Petrochemical Technology,Maoming 525000,China; 2.School of Automation,Guangdong Polytechnic Normal University,Guangzhou 510665,China;3.School of Electrical and Inform- ation Engineering,Hu'nan University,Changsha 410082,China) Abstract:Considering the images of the metal corrosion areas,the dark details have low contrast,and the illumination is not uniform;meanwhile,the color characteristics need to be preserved.To solve these problems,an approach based on multi-scale detail-adaptive enhancement and homomorphic filtering is proposed on the basis of the HSI model.First,the RGB corrosion image was color-transformed,whereby the hue and saturation components were preserved,and the lu- minance component was enhanced.Then,wavelet transform was used to implement multi-scale detail-adaptive enhance- ment,increase the contrast of the detail,and apply block homomorphic filtering,so as to improve the impact of non-uni- form illumination.Consequently,the corrosion image was enhanced.Experimental results show that the proposed meth- od can increase the contrast of dark details and improve the overall brightness of the image of the metal corrosion area, ensuring that the color information is undistorted. Keywords:metal corrosion image;HSI model;multi-scale;detail-adaptive enhancement;block homomorphic filtering 金属材料受到环境因素的影响其腐蚀表面呈型-。在腐蚀无损检测的远程视觉检测(remote 现形貌纹理、灰度、颜色等不同特征。通过对这 vision inspection,RV)检测中,主要是使用视觉设 些特征的分析可识别材料腐蚀的程度和腐蚀的类 备来获取腐蚀信息。对于金属外部腐蚀,可以采 用摄像机或CCD相机获取腐蚀图像,设备内部腐 收稿日期:2017-12-26.网络出版日期:2018-05-09. 基金项目:国家自然科学基金项目(61473331,61471167,61571147): 蚀图像的获取主要有管窥镜、自动爬行器等设 茂名市科技计划工业攻关项目(660509):广东石油 化工学院自然科学青年基金项目(650150), 备。通常为了提高腐蚀原图像质量,可以从内部 通信作者:张磊.E-mail:zhanglei@gdupt.edu.cn, 和外部两方面来进行实施):1)对图像采集的外DOI: 10.11992/tis.201712024 网络出版地址: http://kns.cnki.net/kcms/detail/23.1538.TP.20180507.0952.002.html 金属腐蚀区域图像增强算法研究 雷芳1 ,熊建斌2 ,张磊1 ,郭斯羽3 (1. 广东石油化工学院 计算机与电子信息学院,广东 茂名 525000; 2. 广东技术师范学院 自动化学院,广东 广 州 510665; 3. 湖南大学 电气与信息工程学院,湖南 长沙 410082) 摘 要:针对金属腐蚀区域图像中存在暗细节对比度不高、光照不均匀及颜色特征需保护的问题,提出一种在 HSI 模型下的多尺度细节自适应增强与同态滤波的增强算法。首先,对 RGB 腐蚀图像进行色彩空间变换,保 留其中的色调和饱和度分量不变,对亮度分量进行增强。然后,通过小波变换进行多尺度细节自适应增强,提 升细节对比度并作分块同态滤波,改善光照不均的影响,获得增强后的腐蚀图像。实验结果表明,所提方法增 加了腐蚀暗细节的对比度,提高了金属腐蚀区域图像的整体亮度并保证了色彩信息的不失真。 关键词:金属腐蚀图像;HSI 模型;多尺度;细节自适应增强;分块同态滤波 中图分类号:TP391 文献标志码:A 文章编号:1673−4785(2019)02−0385−08 中文引用格式:雷芳, 熊建斌, 张磊, 等. 金属腐蚀区域图像增强算法研究[J]. 智能系统学报, 2019, 14(2): 385–392. 英文引用格式:LEI Fang, XIONG Jianbin, ZHANG Lei, et al. Image enhancement algorithm in metal corrosion area[J]. CAAI transactions on intelligent systems, 2019, 14(2): 385–392. Image enhancement algorithm in metal corrosion area LEI Fang1 ,XIONG Jianbin2 ,ZHANG Lei1 ,GUO Siyu3 (1. College of Computer and Electronic Information, Guangdong University of Petrochemical Technology, Maoming 525000, China; 2. School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China; 3. School of Electrical and Inform￾ation Engineering, Hu’nan University, Changsha 410082, China) Abstract: Considering the images of the metal corrosion areas, the dark details have low contrast, and the illumination is not uniform; meanwhile, the color characteristics need to be preserved. To solve these problems, an approach based on multi-scale detail-adaptive enhancement and homomorphic filtering is proposed on the basis of the HSI model. First, the RGB corrosion image was color-transformed, whereby the hue and saturation components were preserved, and the lu￾minance component was enhanced. Then, wavelet transform was used to implement multi-scale detail-adaptive enhance￾ment, increase the contrast of the detail, and apply block homomorphic filtering, so as to improve the impact of non-uni￾form illumination. Consequently, the corrosion image was enhanced. Experimental results show that the proposed meth￾od can increase the contrast of dark details and improve the overall brightness of the image of the metal corrosion area, ensuring that the color information is undistorted. Keywords: metal corrosion image; HSI model; multi-scale; detail-adaptive enhancement; block homomorphic filtering 金属材料受到环境因素的影响其腐蚀表面呈 现形貌纹理、灰度、颜色等不同特征。通过对这 些特征的分析可识别材料腐蚀的程度和腐蚀的类 型 [1-2]。在腐蚀无损检测的远程视觉检测 (remote vision inspection,RVI) 检测中,主要是使用视觉设 备来获取腐蚀信息。对于金属外部腐蚀,可以采 用摄像机或 CCD 相机获取腐蚀图像,设备内部腐 蚀图像的获取主要有管窥镜、自动爬行器等设 备。通常为了提高腐蚀原图像质量,可以从内部 和外部两方面来进行实施[3] :1) 对图像采集的外 收稿日期:2017−12−26. 网络出版日期:2018−05−09. 基金项目:国家自然科学基金项目 (61473331,61471167,61571147); 茂名市科技计划工业攻关项目 (660509);广东石油 化工学院自然科学青年基金项目 (650150). 通信作者:张磊. E-mail:zhanglei@gdupt.edu.cn. 第 14 卷第 2 期 智 能 系 统 学 报 Vol.14 No.2 2019 年 3 月 CAAI Transactions on Intelligent Systems Mar. 2019
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有