正在加载图片...
2. B Power Cycles with Two-Phase Media (Vapor Power Cycles) [SB&vw-chapter 3, Chapter ll, Sections 11.1 to 11.7] In this section, we examine cycles that use two-phase media as the working fluid. These can be combined with gas turbine cycles to provide combined cycles which have higher efficiency than either alone. They can also be used by themselves to provide power sources for both terrestrial and space applications. The topics to be covered are i Behavior of two-phase systems: equilibrium, pressure temperature relations 11) Carnot cycles with two-phase media 1 Rankine cycles D Combined cycles 2. B. 1 Behavior of Two-Phase Systems The definition of a phase, as given by SB&vw, is"a quantity of matter that is liquid and its vapor and a glass of ice water. A system which has three phases is a container w 9 homogeneous throughout. Common examples of systems that contain more than one phase are ice, water, and water vapor We wish to find the relations between phases and the relations that describe the change of phase (from solid to liquid, or from liquid to vapor) of a pure substance, including the work done and the heat transfer. To start we consider a system consisting of a liquid and its vapor in equilibrium, which are enclosed in a container under a moveable piston, as shown in Figure 2B-1 The system is maintained at constant temperature through contact with a heat reservoir at temperature T, so there can be heat transfer to or from the system. Water vapor Liquid water Liquid water Figure 2B-1: Two-phase system in contact with constant temperature heat reservoir For a pure substance, as shown at the right, there is a one-to-one correspondence between the temperature at which vaporization occurs and the pressure These values are called the saturation pressure and saturation temperature (see Ch 3 in SB&vw) Temperature P-T relation for liquid-vapor system2B-1 2.B Power Cycles with Two-Phase Media (Vapor Power Cycles) [SB&VW – Chapter 3, Chapter 11, Sections 11.1 to 11.7] In this section, we examine cycles that use two-phase media as the working fluid. These can be combined with gas turbine cycles to provide combined cycles which have higher efficiency than either alone. They can also be used by themselves to provide power sources for both terrestrial and space applications. The topics to be covered are: i) Behavior of two-phase systems: equilibrium, pressure temperature relations ii) Carnot cycles with two-phase media iii) Rankine cycles iv) Combined cycles 2.B.1 Behavior of Two-Phase Systems The definition of a phase, as given by SB&VW, is “a quantity of matter that is homogeneous throughout”. Common examples of systems that contain more than one phase are a liquid and its vapor and a glass of ice water. A system which has three phases is a container with ice, water, and water vapor. We wish to find the relations between phases and the relations that describe the change of phase (from solid to liquid, or from liquid to vapor) of a pure substance, including the work done and the heat transfer. To start we consider a system consisting of a liquid and its vapor in equilibrium, which are enclosed in a container under a moveable piston, as shown in Figure 2B-1. The system is maintained at constant temperature through contact with a heat reservoir at temperature T, so there can be heat transfer to or from the system. (a) Liquid water Liquid water Water vapor Water vapor (b) (c) Figure 2B-1: Two-phase system in contact with constant temperature heat reservoir For a pure substance, as shown at the right, there is a one-to-one correspondence between the temperature at which vaporization occurs and the pressure. These values are called the saturation pressure and saturation temperature (see Ch. 3 in SB&VW). P-T relation for liquid-vapor system
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有